Вероятность выполнения нормы первым, вторым и третьим спортсменом равны соответственно p1=0.8, p2=0.7, p3=0.9, невыполнения - q1=1-p1=0.2, q2=1-p2=0.3, q3=1-p3=0.1. а) По крайней мере один спортсмен выполнит норму: то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994. б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев. По крайней мере два спортсмена выполнят норму: Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют. 1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902. Ровно два спортсмена выполнят норму: p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
1) log₃(x+6)+2log₃(x-3)-3log₃(x-1)=0; ОДЗ: х+6>0 x-3>0 x-1>0 ОДЗ: х>3 Применяем свойства логарифмов. Логарифм степени, логарифм произведения, логарифм частного. log₃(x+6)·(x-3)²/(x-1)³=0; По определению логарифма (x+6)(x-3)²/(x-1)³=3⁰; 3⁰=1 (x+6)(x-3)²=(x-1)³; x³-27x+54=x³-3x²+3x-1; 3x²-30x+55=0 D=900-4·3·55=240 х=(30-4√15)/6 <3 не удовл ОДЗ или х=(30+4√15)/6=5+(2√15/3).
2) Даны векторы a(3;-2;2) и b(-5;6;y). Вектор (a+b) имеет координаты (a+b)(-2;4;2+y) Если векторы взаимно перпендикулярны, то скалярное произведение векторов равно 0. Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат. -2·3+4·(-2)+(2+у)·2=0; -6-8+4+4у=0; 4у=10 у=2,5 3) 20sin²a + 3sina - 2 = 0 - квадратное уравнение. D=9-4·20·(-2)=169 sina=(-3-13)/40=-16/40=-4/10 или sina=(-3+13)/40=10/40=1/4 a ∈ (0; П/2) значит sina>0 sina= (-4/10) не удовлетворяет этому условию. sina=1/4⇒ cosα=√(1-sin²a)=√(1-(1/16))=(√15)/4 sin2a=2sina·cosa=2·(1/4)·(√15)/4=(√15)/8.
а) По крайней мере один спортсмен выполнит норму:
то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994.
б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев.
По крайней мере два спортсмена выполнят норму:
Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют.
1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902.
Ровно два спортсмена выполнят норму:
p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
ОДЗ:
х+6>0
x-3>0
x-1>0
ОДЗ: х>3
Применяем свойства логарифмов.
Логарифм степени, логарифм произведения, логарифм частного.
log₃(x+6)·(x-3)²/(x-1)³=0;
По определению логарифма
(x+6)(x-3)²/(x-1)³=3⁰;
3⁰=1
(x+6)(x-3)²=(x-1)³;
x³-27x+54=x³-3x²+3x-1;
3x²-30x+55=0
D=900-4·3·55=240
х=(30-4√15)/6 <3 не удовл ОДЗ или х=(30+4√15)/6=5+(2√15/3).
2) Даны векторы a(3;-2;2) и b(-5;6;y). Вектор (a+b) имеет координаты
(a+b)(-2;4;2+y)
Если векторы взаимно перпендикулярны, то скалярное произведение векторов равно 0. Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат.
-2·3+4·(-2)+(2+у)·2=0;
-6-8+4+4у=0;
4у=10
у=2,5
3) 20sin²a + 3sina - 2 = 0 - квадратное уравнение.
D=9-4·20·(-2)=169
sina=(-3-13)/40=-16/40=-4/10 или sina=(-3+13)/40=10/40=1/4
a ∈ (0; П/2)
значит sina>0
sina= (-4/10) не удовлетворяет этому условию.
sina=1/4⇒ cosα=√(1-sin²a)=√(1-(1/16))=(√15)/4
sin2a=2sina·cosa=2·(1/4)·(√15)/4=(√15)/8.