Сделаем замену y=пx, тогда получаем уравнение sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи, x = (1/2) + 2n, по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0. (1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4. Итак, x=(1/2) + 2n, где n целое и n>=0. наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают). При n=0, x=1/2.
ax²+bx+c=a(x-x₁)(x-x₂), где х₁,х₂- корни квадратного трехчлена
1)4x²+7x-2=4(х-(-2))(х-(1/4))=(х+2)(4х-1)
D=7²-4·4·(-2)=49+32=81
x₁=(-7-9)/8=-2; x₂=(-7+9)/8=1/4.
2)8x²-2x-1=8(x-(-1/4))(x-(1/2))=(4x+1)(2x-1)
D=(-2)²-4·8·(-1)=4+32=36
x₁=(2-6)/16=-1/4; x₂=(2+6)/16=1/2.
3)12x²-x-1=12(x-(-1/4))(x-(1/3))=(4x+1)(3x-1)
D=(-1)²-4·12·(-1)=1+48=49
x₁=(1-7)/24=-1/4; x₂=(1+7)/24=1/3.
4)x²+3x-40=(x-(-8))(x-5)=(x+8)(x-5)
D=(3)²-4·1·(-40)=4+160=169
x₁=(-3-13)/2=-8; x₂=(-3+13)/2=5.
5)x²+10x-11=(x-(-11))(x-1)=(x+11)(x-1)
D=(10)²-4·1·(-11)=100+44=144
x₁=(-10-12)/2=-11; x₂=(-10+12)/2=1.
6)x²-x-56=(x-(-7))(x-8)=(x+7)(x-8)
D=(-1)²-4·1·(-56)=1+224=225
x₁=(1-15)/2=-7; x₂=(1+15)/2=8.
sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его
y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену
пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи,
x = (1/2) + 2n,
по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0.
(1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4.
Итак, x=(1/2) + 2n, где n целое и n>=0.
наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают).
При n=0, x=1/2.