1) Один корень получается сразу: 2x - a - 2 = 0 x1 = (a+2)/2 = a/2 + 1 2) Теперь решаем логарифм. Область определения: { x+a+1 > 0 { x+a+1 ≠ 1 { (2ax-6a+3)/(x^2-6x+12) > 0 Знаменатель x^2-6x+12 = x^2-6x+9+3=(x-3)^2 + 3 > 0 при любом х, поэтому { x > -a-1 { x ≠ -a { 2ax-6a+3 > 0 Решаем { x > -a-1 { x ≠ -a { x > (6a-3)/(2a) Теперь решаем само уравнение
2ax - 6a + 3 - x^2 + 6x - 12 = 0 -x^2 + 2x(a+3) - (6a+9) = 0 Умножаем всё на -1. Решаем, как обычное квадратное уравнение x^2- 2x(a+3) + (6a+9) = 0 D/4 = (a+3)^2 - (6a+9) = a^2 + 6a + 9 - 6a - 9 = a^2 При a = 0 будет один корень x2 = a + 3 = 3; x1 = a/2 + 1 = 1 Это решение, при котором будет 2 разных корня.
При a ≠ 0 будет D = a^2 > 0, тогда будет 2 корня. x2 = a + 3 - a = 3 x3 = a + 3 + a = 2a + 3 Найдем, при каких а корни x2 и x3 равны x1. 1) 3 = a/2 + 1; a/2 = 2; a = 4; x2 = x1 = 3 Подставляем в область определения { 3 > -4-1; 3 > -5 - верно { 3 ≠ -4 - верно { x > (6a-3)/(2a); 3 > (6*4-3)/8 = 21/8 - верно Это решение
2x - a - 2 = 0
x1 = (a+2)/2 = a/2 + 1
2) Теперь решаем логарифм.
Область определения:
{ x+a+1 > 0
{ x+a+1 ≠ 1
{ (2ax-6a+3)/(x^2-6x+12) > 0
Знаменатель x^2-6x+12 = x^2-6x+9+3=(x-3)^2 + 3 > 0 при любом х,
поэтому
{ x > -a-1
{ x ≠ -a
{ 2ax-6a+3 > 0
Решаем
{ x > -a-1
{ x ≠ -a
{ x > (6a-3)/(2a)
Теперь решаем само уравнение
2ax - 6a + 3 - x^2 + 6x - 12 = 0
-x^2 + 2x(a+3) - (6a+9) = 0
Умножаем всё на -1. Решаем, как обычное квадратное уравнение
x^2- 2x(a+3) + (6a+9) = 0
D/4 = (a+3)^2 - (6a+9) = a^2 + 6a + 9 - 6a - 9 = a^2
При a = 0 будет один корень
x2 = a + 3 = 3; x1 = a/2 + 1 = 1
Это решение, при котором будет 2 разных корня.
При a ≠ 0 будет D = a^2 > 0, тогда будет 2 корня.
x2 = a + 3 - a = 3
x3 = a + 3 + a = 2a + 3
Найдем, при каких а корни x2 и x3 равны x1.
1) 3 = a/2 + 1; a/2 = 2; a = 4; x2 = x1 = 3
Подставляем в область определения
{ 3 > -4-1; 3 > -5 - верно
{ 3 ≠ -4 - верно
{ x > (6a-3)/(2a); 3 > (6*4-3)/8 = 21/8 - верно
Это решение
2) 2a + 3 = a/2 + 1; 3a/2 = -2; a = -4/3; x3 = x1 = -8/3 + 3 = 1/3
Подставляем в область определения
{ 1/3 > -4/3 - 1; 1/3 > -7/3 - верно
{ x ≠ -a; 1/3 ≠ -4/3 - верно
{ x > (6a-3)/(2a); 1/3 > (6*(-4/3)-3)/8 = (-8-3)/8 = -11/8 - верно
Это решение.
ответ: a1 = 0; a2 = 4; a3 = -4/3
Сумма целых значений 0 + 4 = 4
Объяснение:
1) f(x)=x/(x-1) ОДЗ: х-1≠0 х≠1
f'(x)=(x/(x-1))'=(x'*(x-1)-x*(x-1)')/(x-1)²=(x-1-x)/(x-1)²=-1/(x-1)².
Так как (х-1)²>0 ⇒
x∈(-∞;1)U(1;+∞) - функция убывает.
2) f(x)=x²/(x+3) ОДЗ: х+3≠0 х≠-3
f'(x)=(x²/(x+3))'=((x²)'*(x+3)-x²*(x+3)')/(x+3)²=(2x*(x+3)-x²)/(x+3)²=
=(2x²+6x-x²)/(x+3)²=(x²+6x)/(x+3)²=x*(x+6)/(x+3)². ⇒
-∞__+__-6__-__(-3)__-__0__+__+∞
x∈(-∞;-6)U(0;+∞) - ф-ция возрастает.
х∈(-6;-3)U(-3;0) - ф-ция убывает.
3) f(x)=2x/(16-x²) ОДЗ: 16-x²≠0 (4-x)(4+x)≠0 x≠±4.
f'(x)=((2x)'*(16-x²)-2x*(16-x²)')/(16-x²)²=(2*(16-x²)-2x*(-2x))/(16-x²)²=
=(32-2x²+4x²)/(16-x²)²=(2x²+32)/(16-x²)²=2*(x²+16)/(16-x²)².
Так как x²+16>0 и(16+x²)²>0 ⇒ ф-ция возрастающая.
-∞__+__(-4)__+__(4)__+__+∞ ⇒
x∈(-∞;-4)U(-4;4)U(4;+∞) - ф-ция возрастает.
4) f(x)=(x²-1)/(x²-9) ОДЗ: х²-9≠0 (х-3)(х+3)≠0 х≠±3.
f'(x)=((x²-1)/(x²-9))'=(x²-1)'*(x²-9)-(x²-1)*(x²-9)'/(x²-9)²=
=(2x*(x²-9)-(x²-1)*2x)/(x²-9)²=(2x³-18x-2x³+2x)/(x²-9)²=-18x/(x²-9)².
x>0 ⇒ ф-ция убывает.
х<0 ⇒ ф-ция возрастает. ⇒
x∈(-∞;-3)U(-3;0) - ф-ция возрастает.
x∈(0;3)U(3;+∞) - ф-ция убывает.
5) f(x)=√x*((5-x)x+4) ОДЗ: х≥0
f'(x)=(√x*(x+4))'=(√x)'*(x+4)+√x*(x+4)'=(1/(2*√x))*(x+4)+√x*1=
=((x+4)/(2*√x))+√x=(x+4+2*√x*√x)/(2*√x)=(x+4+2x)/(2*√x)=(3x+4)/(2*√x).
2*√x>0 и cогласно ОДЗ: 3x+4>0 ⇒
√x*(x+4) - ф-ция возрастающая.
x∈[0;+∞) - ф-ция возрастает.
6) f(x)=√(x-1)*(5-x) ОДЗ: х-1≥0 х≥1
f'(x)=(√(x-1)*(5-x))'=√(x-1))'*(5-x)+√(x-1)*(5-x)'=(1/(2*√(x-1))*(5-x)+√(x-1)*(-1)=
=(5-x)/(2*√(x-1))-√(x-1)=(5-x-2*√(x-1)*√(x-1))/(2*√(x-1))=
=(5-x-2*(x-1))/(2*√(x-1))=(5-x-2x+2)/(2*√(x-1))=(-3x+7)/(2*√(x-1)).
2*√(x-1)>0 ⇒
-3x+7=0 3x=7 |÷3 x=7/3=2¹/₃.
x∈[1;2¹/₃) - ф-ция возрастает.
x∈(2¹/₃;+∞) - ф-ция убывает.