Решаем второе ур-е системы: 12-4y+10-3+36-12y+5y=0 11y=55 Y=5
ПОдставляем Y в первое ур-е: X=6-2*5 X= (-4) 3)Подставляем ординаты и абсциссы каждой из точек поочередно в общий вид прямой,получаем систему уравнений с двумя переменными. 8=3k+b 1=-4k+b <это система b=8-3k 1=-4k+8-3k <это 2 запись системы -7=-7k k=1 b=8-3*1=5 <---это не система(под ней вычисляется) ответ:k=1;b=5;Уравнение прямой - y=x+5 4)3х-2у=7
6х-4у=1
у=1,5х-3,5
6х-4(1,5х-3,5)=1
у=1,5х-3,5
6х-6х=4,5
у=1,5х-3,5
0=4,5 - неверное равенство, следовательно система уравнений не имеет смысла.
5)х-количество облигаций по 2000руб. у-по 3000 руб
1)4x+y=3
6x-2y=1
y = 3-4x
6х - 2(3-4x) = 1
6х - 6 + 8х = 1
14 х = 7
х = 2
y = 3-4*2
y= - 5
ответ: х = 2
y = - 5
2)2(3x+2y) + 9 = 4x+21
2x+10= 3-(6x+5y)6x+4y+9-4x-21=0
2x+10-3+6x+5y=0
2x=12-4y
2x+10-3+6x+5y=0
X=6-2y
2(6-2y)+10-3+6x+5y
Решаем второе ур-е системы:
12-4y+10-3+36-12y+5y=0
11y=55
Y=5
ПОдставляем Y в первое ур-е:
X=6-2*5
X= (-4)
3)Подставляем ординаты и абсциссы каждой из точек поочередно в общий вид прямой,получаем систему уравнений с двумя переменными.
8=3k+b
1=-4k+b <это система
b=8-3k
1=-4k+8-3k <это 2 запись системы
-7=-7k
k=1
b=8-3*1=5 <---это не система(под ней вычисляется)
ответ:k=1;b=5;Уравнение прямой - y=x+5
4)3х-2у=7
6х-4у=1
у=1,5х-3,5
6х-4(1,5х-3,5)=1
у=1,5х-3,5
6х-6х=4,5
у=1,5х-3,5
0=4,5 - неверное равенство, следовательно система уравнений не имеет смысла.
5)х-количество облигаций по 2000руб. у-по 3000 руб
х+у=8
2000х+3000у=19000
1)х=8-у
2)2000(8-у)+3000у=19000
16000-2000у+3000у=19000
1000у=3000
у=3
3)х=8-3
х=5
ответобьяснение
Объяснение:
при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.