Пусть гвоздика стоит 10 ртогда роза стоит (180-10*2)/3=160/3=53.333(не кратно 10)Пусть гвоздика стоит 20 ртогда роза стоит (180-20*2)/3=140/3=46,667(не кратно 10)Пусть гвоздика стоит 30 ртогда роза стоит (180-30*2)/3=120/3=40(кратно 10)Пусть гвоздика стоит 40 ртогда роза стоит (180-40*2)/3=100/3=33,333(не кратно 10)Пусть гвоздика стоит 50 ртогда роза стоит (180-50*2)/3=80/3=26,667(не кратно 10)Пусть гвоздика стоит 60 ртогда роза стоит (180-60*2)/3=60/3=20(кратно 10)Пусть гвоздика стоит 70 ртогда роза стоит (180-70*2)/3=40/3=13,333(не кратно 10)Пусть гвоздика стоит 80 ртогда роза стоит (180-80*2)/3=20/3=6,667(не кратно 10) ответ: роза стоит 20 р, гвоздика 60или роза стоит 40 р, гвоздика 30.
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано