Пусть первоначальная скорость равна х км/ч, а после увеличения скорости - (x+12) км/ч. Время пути из пункта А в пункт В, равно 300/х ч, а из пункта В в пункт А - 300/(x+12) ч. На обратный путь автомобиль затратил на 50 мин меньше, чем на путь от А до В, значит составляем и решим уравнение
50 мин = 50/60 ч = 5/6 ч.
По теореме Виета
— не удовлетворяет условию.
км/ч - первоначальная скорость автомобиля.
ответ: 60 км/ч.
2) Найдем дискриминант квадратного уравнения
D>0 для всех действительных k имеет два действительных корня, значит нет такого значения k в котором квадратное уравнение имело бы только один корень.
порядок числа Х равен 6
число Х имеет вид а * 10⁶ , где 1 ≤ а < 10
а) х² = ( а * 10⁶)² = а² * 10¹² (порядок 12)
в данном выражении 1² ≤ а² < 10²
1 ≤ а² < 100 ,
это значит, что а² может принимать значения не только от 1 до 10,
но и в промежутке [10; 100), что увеличивает порядок числа ещё на 1,
т.е. порядок будет 12 + 1 = 13.
Значит порядок числа х² может быть 12 или 13.
б) х⁵ = ( а * 10⁶)⁵ = а⁵ * 10³⁰ (порядок 30)
в данном выражении 1⁵ ≤ а⁵ < 10⁵
1 ≤ а⁵ < 10⁵ ,
это значит, что а² может принимать значения не только от 1 до 10,
но и в промежутке [10; 10⁵), что может увеличить порядок числа максимум ещё на 4, т.е. порядок максимум может быть 30 + 4 = 34
Значит порядок числа х² может быть равен 30, 31, 32, 33 или 34.
в) √х = х¹/² = ( а * 10⁶)¹/² = а¹/² * 10³
в данном выражении 1¹/² ≤ а¹/² < 10¹/²
1 ≤ а¹/² < 10¹/²
т.о. а¹/² удовлтворяет стандартной записи числа, т.е .лежит в промежутке
от 1 включительно до 10.
Значит порядок числа √х равен 3.
г) 1/х = х⁻¹ = ( а * 10⁶)⁻¹ = а⁻¹ * 10⁻⁶ = 1/а* 10⁻⁶ (порядок равен -6)
т.к. 1 ≤ а < 10 => 1/10 < 1/а ≤ 1 =>
это значит, что 1/а может принимать значения не только = 1,
но и в промежутке (1/10; 1], что может уменьшить порядок числа на 1.
Значит порядок числа 1/х может быть равен -6 или -7.
Пусть первоначальная скорость равна х км/ч, а после увеличения скорости - (x+12) км/ч. Время пути из пункта А в пункт В, равно 300/х ч, а из пункта В в пункт А - 300/(x+12) ч. На обратный путь автомобиль затратил на 50 мин меньше, чем на путь от А до В, значит составляем и решим уравнение
50 мин = 50/60 ч = 5/6 ч.
По теореме Виета
— не удовлетворяет условию.
км/ч - первоначальная скорость автомобиля.
ответ: 60 км/ч.
2) Найдем дискриминант квадратного уравнения
D>0 для всех действительных k имеет два действительных корня, значит нет такого значения k в котором квадратное уравнение имело бы только один корень.
3) Квадратное уравнение имеет корни(т.к. ), значит можем воспользоваться теоремой Виета.