Желтых 4 ж. зеленых --- 6 ж. взято 3 ж. Р(1 др.) ? Решение. 1-ы й с п о с о б. 4 + 6 = 10 всего жетонов. Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30 Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6 События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов. Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые. Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2 Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых. Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8 ответ:0,8 2-о й с п о с о б. 4 + 6 = 10 всего жетонов. С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон. С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый 36 + 60 = 96 всего благоприятных дающих нужный результат). Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых . ответ:0,8
У нас есть два варианта: 1. Выбывшие игроки не играли между собой, тогда без учета их игр остальные игроки сыграли 78 партий (при этом все сыграли со всеми 2. Одну игру выбывшие игроки сыграли между собой, тогда эта игра не влияет на кол-во игр других игроков, то есть остальные игроки между собой сыграли 79 игр
Решим задачу наоборот, нам известно, что игроков было n. Надо узнать, сколько сыграно партий. Первый игрок сыграл всего n-1 партмй (поскольку сам с собой он не мог играть), второго мы уже посчитаем как n-2, поскольку одну партию с первым игроком мы уже посчитали. И так далее, пока не дойдет до единицы, а там останется ещё один игрок, все партии которого мы уже посчитали. То есть мы складываем все числа от нуля до n-1.
Поступим так же.
0+1+2+3+4+5+6+7+8+9+10+11+12=78 n-1=12 значит игроков было 13
зеленых --- 6 ж.
взято 3 ж.
Р(1 др.) ?
Решение.
1-ы й с п о с о б.
4 + 6 = 10 всего жетонов.
Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30
Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6
События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов.
Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые.
Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2
Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых.
Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8
ответ:0,8
2-о й с п о с о б.
4 + 6 = 10 всего жетонов.
С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти
С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон.
С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый
36 + 60 = 96 всего благоприятных дающих нужный результат).
Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых .
ответ:0,8
1. Выбывшие игроки не играли между собой, тогда без учета их игр остальные игроки сыграли 78 партий (при этом все сыграли со всеми
2. Одну игру выбывшие игроки сыграли между собой, тогда эта игра не влияет на кол-во игр других игроков, то есть остальные игроки между собой сыграли 79 игр
Решим задачу наоборот, нам известно, что игроков было n. Надо узнать, сколько сыграно партий. Первый игрок сыграл всего n-1 партмй (поскольку сам с собой он не мог играть), второго мы уже посчитаем как n-2, поскольку одну партию с первым игроком мы уже посчитали. И так далее, пока не дойдет до единицы, а там останется ещё один игрок, все партии которого мы уже посчитали. То есть мы складываем все числа от нуля до n-1.
Поступим так же.
0+1+2+3+4+5+6+7+8+9+10+11+12=78
n-1=12 значит игроков было 13
И еще прибавим двух выьывших игроков
ответ: 15 игроков