Подберите такое число a чтобы график функции y = g(x) проходил через точку м. a. g(x) = 2x+a / x-a+1(дробь); m(2; -3) б.g(x) = 3x - 2 - 3a / 3x - 5 - a(дробь); m (0; -1)
Предположим , что степень полинома P(x) не равна степени полинома: x*Q(x).
Тогда степень полинома:
P(x) + x*Q(x) равна либо степени полинома P(x) либо x*Q(x) , в зависимости от того степень какого полинома больше. Но тогда по условию полином большей степени должен иметь 2 степень. Соответственно полином меньшей степени имеет 1 или 0 степень. Но тогда полином : x*P(x)*Q(x) имеет 2 или 3 степень, что невозможно , тк по условию : P(x)*x*Q(x) должен иметь 9+1=10 степень. То мы пришли к противоречию .
Значит степени полиномов P(x) и x*Q(x) должны быть равны.
Тогда тк степень x*P(x)*Q(x) равна 10. То степень полинома P(x) равна:10/2=5
2) Полином :
P(x) +Q(x) имеет степень 3, а полином
P(x)-Q(x) имеет степень 5.
Тогда сумма и разность этих полиномов имеет 5 степень:
То есть 2*P(x) имеет 5 степень и 2*Q(x) имеет 5 степень.
Объяснение:
Чтобы записать данные нам выражения в виде многочлена, мы должны воспользоваться формулами сокращенного умножения.
Пример №1.
(3c - xy)^2
Данная формула называется квадратом разности.
(a - b)^2 = a^2 - 2ab + b^2 - вот вид данной формулы.
Теперь идем по порядку:
Квадрат первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа.
Получаем:
9c^2 - 6cxy + xy^2 - окончательный результат.
Пример №2.
(3 + 5a)(3 - 5a)
Данная формула называется разностью квадратов.
Для того, чтобы решить этот пример, мы берем скобку со знаком минус, и возводим оба числа(стоящие в скобке) в квадрат.
То есть:
3^2 - 5a^2
Или же 9 - 25a^2
Задача решена.
Если есть вопросы - задавай.
Предположим , что степень полинома P(x) не равна степени полинома: x*Q(x).
Тогда степень полинома:
P(x) + x*Q(x) равна либо степени полинома P(x) либо x*Q(x) , в зависимости от того степень какого полинома больше. Но тогда по условию полином большей степени должен иметь 2 степень. Соответственно полином меньшей степени имеет 1 или 0 степень. Но тогда полином : x*P(x)*Q(x) имеет 2 или 3 степень, что невозможно , тк по условию : P(x)*x*Q(x) должен иметь 9+1=10 степень. То мы пришли к противоречию .
Значит степени полиномов P(x) и x*Q(x) должны быть равны.
Тогда тк степень x*P(x)*Q(x) равна 10. То степень полинома P(x) равна:10/2=5
2) Полином :
P(x) +Q(x) имеет степень 3, а полином
P(x)-Q(x) имеет степень 5.
Тогда сумма и разность этих полиномов имеет 5 степень:
То есть 2*P(x) имеет 5 степень и 2*Q(x) имеет 5 степень.
Тогда P(x)*Q(x) имеет 10 степень.