Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
φ = ±arccos(√2 / 2) + 2пk, kЄZ
φ = ±п/4 + 2пk, kЄZ
-4п<=φ<=0 (по условию)
-4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0
-9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4
-9/8<=k<=-1/8 -7/8<=k<=1/8
k=1 k=0
Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
φ = п/4 + 2п*1, kЄZ φ = -п/4 + 2п*0, kЄZ
φ = 9п/4, kЄZ φ = -п/4, kЄZ
Получили 2 значения угла с учетом промежутка, заданного условием.
Удачи!
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4