прямая y = kx+b проходит через точку пересечения прямых y = -3x+0.5 и y=6x-0.5 и не пересекает прямую y=17x - 5.найдите k и b
Решение: Так как искомая прямая не пересекает прямую y=17x - 5, то она параллельна этой прямой. Поэтому угловой коэффициент искомой прямой равен k=17 так как угловые коэффициенты параллельных прямых равны. Найдем точку пересечения прямых y = -3x+0,5 и y = 6x-0,5 -3х + 0,5 = 6х - 0,5 9х = 1 х = 1/9 y(1/9) = -3*(1/9) + 0,5 = -1/3 + 1/2 = -2/6 +3/6 =1/6 Получили точку (1/9;1/6) Подставим координаты точки в уравнение прямой с известным угловым коэффициентом y = kx + b 1/6 = 17*1/9 + b b = 1/6- 17/9 = 3/18 - 34/18 = -31/18 Запишем уравнение искомой прямой y = 17x - 31/17 ответ: y = 17x - 31/17
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
Решение:
Так как искомая прямая не пересекает прямую y=17x - 5, то она параллельна этой прямой. Поэтому угловой коэффициент искомой прямой равен k=17 так как угловые коэффициенты параллельных прямых равны.
Найдем точку пересечения прямых y = -3x+0,5 и y = 6x-0,5
-3х + 0,5 = 6х - 0,5
9х = 1
х = 1/9
y(1/9) = -3*(1/9) + 0,5 = -1/3 + 1/2 = -2/6 +3/6 =1/6
Получили точку (1/9;1/6)
Подставим координаты точки в уравнение прямой с известным угловым коэффициентом
y = kx + b
1/6 = 17*1/9 + b
b = 1/6- 17/9 = 3/18 - 34/18 = -31/18
Запишем уравнение искомой прямой
y = 17x - 31/17
ответ: y = 17x - 31/17
№1.
№2.
ответ:
№3.
а)
f(x) = 19-2x; D(f) = (-∞;+∞)
б)
g(x) = x+1; D(g) = (-∞;+∞)
в)
y(x) = √x; D(y) = [0;+∞)
г)
y = x²-4; D(y) = (-∞;+∞)
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.