Вспомним свойство что медианы точкой пересечения делиться как 2:1 считая от вершины,то есть: AO/ON=2 ; CO/OM=2 Откуда: AO=2*18/3=12 CO=2*24/3=16. Заметим, что треугольник AOC подобен египетскому прямоугольному треугольнику со сторонами 3,4,5 с коэффициентом подобия 4. Значит его площадь: S(AOC)=12*16/2=96. Тк треугольники AOC и AMC имеют общую высоту,то их площади относятся как основания,то есть: S(AMC)/S(AOC)=MC/OC=3/2 S(AMC)=3/2 *S(AOC). Треугольники ABC и AMC тоже имеют одну высоту,поэтому: S(ABC)/S(AMC)=AB/AM=2 S(ABC)=2*S(AMC)=3*S(AOC)=3*96= =288 см^2. Вообще говоря известный факт ,что три медианы делят площадь треугольника на 3. Тк точка пересечения медиан его центр тяжести.
1) 18 - 16х = -30х - 10, 2) -7х + 2 = 3х - 1, 3) 10 - 2х = 12 - х,
-16х + 30х = -10 - 18, -7х - 3х = -1 - 2, -2х + х = 12 - 10,
14х = -28, -10х = -3, -х = 2,
х = -28 : 14, х = -3 : (-10), х = -2;
х = -2; х = 0,3;
4) 6х - 19 = -2х - 15, 5) 0,2х + 3,4 = 0,6х - 2,6, 6) 5/6х + 12 = 1/4х - 2,
6х + 2х = -15 + 19, 0,2х - 0,6х = -2,6 - 3,4, 12(5/6х + 12) = 12(1/4х - 2),
8х = 4, -0,4х = -6, 10х + 144 = 3х - 24,
х = 4 : 8, х = -6 : (-0,4), 10х - 3х = -24 - 144,
х = 0,5; х = 15; 7х = -168,
х = -168 : 7,
х = -24.