f(x) = -2x² - x + 5 - квадратичная функция, график - парабола с ветвями, направленными вниз.
I x₀ = -b / (2a) = 1/(-2) = -0,5; y₀ = 5; B(-0,5; 5,25) - вершина параболы
Ось симметрии - прямая x = x₀, то есть в нашем x = -0,5;
Пункт 4) задания мы решили!
II В качестве точек для построения берем:
III Строим график (см. рисунок)
1) При x = -0,3; y ≈ 4,5; при x = 1,2; y ≈ 0,9; при x = 3; y = -16 (здесь проще подставить в функцию...)
2) y = 5 при x = 0 и при x = -0,5; y = 2 при x = 1 и при x = -1,5; y = -1 при x = -2 и при x = 1,5;
3) Нули функции (точки пересечения графика с осью OX)
При x₁ ≈ -1,9 или x₂ ≈ 1,4; y = 0;
Промежутки знакопостоянства:
При x ∈ (-∞; x₁) ∪ (x₂; +∞), f(x) < 0 (x ∈ (-∞; -1,9) ∪ (1,4; +∞))
При x ∈ (x₁; x₂), f(x) > 0 (x ∈ (-1,9; 1,4))
деще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
Объяснение:
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
f(x) = -2x² - x + 5 - квадратичная функция, график - парабола с ветвями, направленными вниз.
I x₀ = -b / (2a) = 1/(-2) = -0,5; y₀ = 5; B(-0,5; 5,25) - вершина параболы
Ось симметрии - прямая x = x₀, то есть в нашем x = -0,5;
Пункт 4) задания мы решили!
II В качестве точек для построения берем:
III Строим график (см. рисунок)
1) При x = -0,3; y ≈ 4,5; при x = 1,2; y ≈ 0,9; при x = 3; y = -16 (здесь проще подставить в функцию...)
2) y = 5 при x = 0 и при x = -0,5; y = 2 при x = 1 и при x = -1,5; y = -1 при x = -2 и при x = 1,5;
3) Нули функции (точки пересечения графика с осью OX)
При x₁ ≈ -1,9 или x₂ ≈ 1,4; y = 0;
Промежутки знакопостоянства:
При x ∈ (-∞; x₁) ∪ (x₂; +∞), f(x) < 0 (x ∈ (-∞; -1,9) ∪ (1,4; +∞))
При x ∈ (x₁; x₂), f(x) > 0 (x ∈ (-1,9; 1,4))
деще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
Объяснение:
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о4
еще9пщпдахвзадал00а0а 4о4оуогкг4окококо4о49пщпдахвзадал00а0а 4о4оуогкг4окококо4о4