Пусть вес самого 1-го сплава = х кг, а процентное содержание в нём серебра = у%.определим ,сколько кг серебра было в 1-ом сплаве: .2-ой сплав. вес его равен (х+3) кг. серебра в нём будет , что составляет 90% серебра от веса всего сплава, так как по условию мы получим сплав 900 пробы ( 900 проба серебра значит, что сплав содержит 900 г серебра на 1000 г от всего веса, то есть 90%). то есть с другой стороны серебра во 2 сплаве будет .получим первое уравнение системы: 3 сплав. вес всего сплава равен (х+2) кг. так как добавляли 2 кг серебра 900 пробы, то вес серебра в этих 2 кг будет равен кг . а вес серебра во всём 3-ем сплаве равен .с другой стороны 3-ий сплав будет иметь 840-ую пробу, то есть содержание серебра в 3-ем сплаве равно 84% от веса всего сплава, то есть равно кг .получим второе уравнение системы: решим систему уравнений.получили, что вес первоначального сплава равен 3 кг.этот сплав 80-типроцентный, то есть получили 800-ую пробу сплава,что соответствует частям серебра в трёхгилограммовом сплаве .
ответ:
log3 = 2*log9 - 1
log3 = 2 * log(3^2) - log3 3
log3 = 2 * 1\2 * log3 - log3 3
log3 = log3 - log3 3
log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]
теперь основания логарифмов одинаковые =>
решать выражения при логарифмах (приравнять их):
sin 3x - sin x) = [(17*sin 2x) \ 3]
3*(sin 3x - sin x) = 17*sin 2x
3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)
3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x =>
6 - 12sin^2 x = 34cos x
6 - 12*(1 - cos^2 x) = 34cos x
6 - 12 + 12cos^2 x - 34cos x = 0
12cos^2 x - 34cos x - 6 = 0 > (: ) на 2 и cos x = t
6t^2 - 17t - 3 = 0
дальше легко
объяснение: