Сразу заметим, что f(x) - непрерывна и не имеет асимптот. Найдем ее промежутки возрастания и убывания. f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4) Нули производной: x=3, x=3/4. f'(x) + - - 3/4 3 >x f(x) возрастает убывает убывает Отсюда следует, что максимум функции достигается при x=3/4. При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4) f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64 m<729/64
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x) + - -
3/4 3 >x
f(x) возрастает убывает убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.