Это делается так.
Во-первых, нужно рассчитать содержание ЧИСТОЙ кислоты в каждом из растворов (любой водный раствор состоит из чистой кислоты и растворителя).
В 30%-ном растворе массой Х кг содержится 0,30*Х кг чистой кислоты.
В 60%-ном растворе массой Yкг содержится 0,6*Y кг чистой кислоты.
Вода принимается за 0%-ный раствор - она кислоты не содержит.
При смешивании согласно условию задачи
общая масса раствора после смешения равна (X + Y + 10) кг
Чистой кислоты там содержится (0,30*Х + 0,6*Y) кг чистой кислоты.
Таким образом, (0,30*Х + 0,6*Y)/(X + Y + 10) = 0,36 (это первое уравнение системы)
Аналогичным образом составляется второе уравнение и решается система.
Остались вопросы в личку, разберемся.
(2x²+5x+3)/(2x+3)=x²-x-2
разложим первую скобку на множители (можно по теореме виета, а можно через дискриминант и корни кв.уравнения):
2х²+5х+3 = (2х+3)*(х+1) тогда изначальное уравнение принимает вид:
(2х+3)*(х+1) / (2x+3)=x²-x-2
учитываем, что х не может быть равно -3/2 (деление на 0) ,
и сокращаем на 2х+3:
х+1 = x²-x-2 =(х+1)*(х-2)
отсюда получим два уравнения для двух корней: х+1 = 0 и х-2 = 1
т.е. один корень: х1=-1, второй: х2=3
проверяем, нет ли "запрещенных корней: -3/2 - их нет, значит,
ответ: два корня уравнения: х1=-1, х2=3
Это делается так.
Во-первых, нужно рассчитать содержание ЧИСТОЙ кислоты в каждом из растворов (любой водный раствор состоит из чистой кислоты и растворителя).
В 30%-ном растворе массой Х кг содержится 0,30*Х кг чистой кислоты.
В 60%-ном растворе массой Yкг содержится 0,6*Y кг чистой кислоты.
Вода принимается за 0%-ный раствор - она кислоты не содержит.
При смешивании согласно условию задачи
общая масса раствора после смешения равна (X + Y + 10) кг
Чистой кислоты там содержится (0,30*Х + 0,6*Y) кг чистой кислоты.
Таким образом, (0,30*Х + 0,6*Y)/(X + Y + 10) = 0,36 (это первое уравнение системы)
Аналогичным образом составляется второе уравнение и решается система.
Остались вопросы в личку, разберемся.
(2x²+5x+3)/(2x+3)=x²-x-2
разложим первую скобку на множители (можно по теореме виета, а можно через дискриминант и корни кв.уравнения):
2х²+5х+3 = (2х+3)*(х+1) тогда изначальное уравнение принимает вид:
(2х+3)*(х+1) / (2x+3)=x²-x-2
учитываем, что х не может быть равно -3/2 (деление на 0) ,
и сокращаем на 2х+3:
х+1 = x²-x-2 =(х+1)*(х-2)
отсюда получим два уравнения для двух корней: х+1 = 0 и х-2 = 1
т.е. один корень: х1=-1, второй: х2=3
проверяем, нет ли "запрещенных корней: -3/2 - их нет, значит,
ответ: два корня уравнения: х1=-1, х2=3