С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
в) (а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так или так: (а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3) или так: (√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)² как больше нравится
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
а) (√а+1)/(а-1)=(√а+1)/(√а+1)(√а-1)=1/(√а-1)
б) (13-√13)/√13=√13-1
в)
(а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так
или так:
(а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3)
или так:
(√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)²
как больше нравится
2)
а) 3/(2√6)=(3√6)/(2*6)=(3√6)/(4*3)=√6/4
10/(√14-2)=10(√14+2)/(√14-2)(√14+2)=10(√14+2)/(14-4)=√14+2
3)
а) √5b^2,если b≤ 0
√5b^2=-b√5, b≤0
б) √(12а⁴)=√(3*4а⁴)=2а²√3
в) √(-а^5)=√(-а*а⁴)=а²√(-а), только если a≤0
г)
√((-а^3)(b^6)) ,если b>0
√((-а³)(b^6))=a*b³√(-а) только если a≤0