В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Luciferiy
Luciferiy
23.07.2021 01:20 •  Алгебра

понять доказательство утверждения! пример 6 - на стр. 17 написано «для самого числа а есть три » - далее перечисляются варианты. не могу понять, почему именно эти объясните досконально, как ребёнку. давно сижу, не могу догадаться

Показать ответ
Ответ:
NikoBellic99
NikoBellic99
27.07.2020 08:56

а) Выбрать 4 ромашки можно C^4_8=\dfrac{8!}{4!4!}=70 а 3 незабудки - C^3_9=\dfrac{9!}{6!3!}=84 По правилу произведения, составить букет из 7 цветов, в котором 4 ромашки и 3 незабудки можно 70\cdot 84=5880

ответ

b) Как минимум 4 незабудки это 4 незабудки или 5 незабудки или 6 незабудки или 7 незабудки.. Чувствуется что здесь правило сложения. Четыре незабудки и три ромашки можно C^4_9\cdot C^3_8=\dfrac{9!}{4!5!}\cdot\dfrac{8!}{5!3!}=126\cdot 56=7056 Выбрать пять незабудки и две ромашки можно C^5_9\cdot C^2_8=\dfrac{9!}{5!4!}\cdot\dfrac{8!}{6!2!}=126\cdot28=3528 Выбрать шесть цветов незабудки и одна ромашку можно C^6_9\cdot C^1_8=\dfrac{9!}{6!3!}\cdot 8=84\cdot8=672 И наконец выбрать семь цветов незабудки можно C^7_9=\dfrac{9!}{7!2!}=36 По правилу сложения, составить букет из 7 цветов, в котором как минимум должны быть 4 незабудки можно 7056 + 3528+672+36=11292

ответ: 11292.

0,0(0 оценок)
Ответ:
Fhh72
Fhh72
16.12.2022 04:24

Объяснение:

попытаюсь объяснить. в целом алгоритм простой. легче всего, конечно, построить график и посмотреть где функция убывает, а где возрастает. Но если такой не подходит, то надо искать производную. В первом примере производная от синуса равна косинусу. Приравняем получившуюся производную к нулю (f'(x)=cosx=0). То есть х=π/2+πn, где n∈Z.  Именно при таких х производная равна 0, то есть функция f(x) меняет свою монотонность. Если производная меньше нуля, то функция убывает, если больше, то она возрастает. Для этого надо подставить какие нибудь значения справа и слева от точек x=π/2+πn. Получаем что слева функция возрастает, а справа убывает. То есть функция возрастает от -π/2+πn, до π/2+πn, а убывает от π/2+πn до 3π/2+πn, где n∈Z.

Аналогично решим и другие. (надеюсь что теорию вы поняли, поэтому не буду расписывать)

2) Производная от косинуса равна   минус синусу. Синус равен нулю в точках πn, где n∈Z. Так как при π/2 -sin(π/2) <0, то на промежутке от 0+πn до π+πn, где n ∈Z, функция убывает (так как точка π/2 лежит на таком промежутке при n=0 ), значит на интервале от -π+πn до 0+πn функция возрастает.

3) производная от тангенса равна 1/((cos x)^2).  То есть при любых х производная больше 0. Это значит что функция возрастает на всей области определения.

4) производная от данной функции равна f'(x)=2cos(2x)-2sin(2x). Производная равна нулю при x=π/8+2πn и x=5π/8+2πn, где n∈Z. Решив аналогично предыдущим примерам, получим, что функция убывает на интервале [π/8+2πn; 5π/8+2πn]  и возрастает на интервале [5π/8+2πn; 9π/8+2πn] где n∈Z.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота