В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
svetaredkina
svetaredkina
09.01.2023 01:19 •  Алгебра

Понять, как решаются такие уравнения: 1)cos 2x = 1; 2) cos t/3 = -1; 3) cos (4-2t) = 0; если можно, то подробно)​

Показать ответ
Ответ:
polyakov7728
polyakov7728
10.10.2020 04:20

1) cos2x=1

Находим все точки на окружности, у которых косинус = 1

Это право единичной окружности. Значение повторяется каждый круг. Значит все точки задаются выражением 0+2\pi n

2x=2\pi n \\ x=\pi n

n везде целое

2) Аналогично. Ищем точки у которых косинус = -1

Это лево окружности

\dfrac{t}{3}=\pi+2\pi n\\t=3\pi +6\pi n n всё ещё целое (но это уже не n из 1 примера, а очевидно другое)

3) cos чего-то равен 0. Значит это что-то = \dfrac{\pi }{2}+\pi n

4-2t=\dfrac{\pi }{2}+\pi n\\ \\ 2t=4-\dfrac{\pi }{2}+\pi n\\ \\ t=2-\dfrac{\pi }{4}+\dfrac{\pi n}{2}

n целое

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота