Чтобы найти корни, необходимо приравнять выражение к нулю. Произведение равно нулю, когда один из множителей равен нулю. Таким образом: (х-5)*(х+4)=0 x=5 и x=-4 Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках: + - + (-4)(5)>x Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5). Получившееся выражение можно записать 2-мя х∈(-4;5) или -4<x<5 В ответе записывают один из получившихся вариантов.
(х-5)*(х+4)=0
x=5 и x=-4
Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках:
+ - +
(-4)(5)>x
Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5).
Получившееся выражение можно записать 2-мя
х∈(-4;5) или -4<x<5
В ответе записывают один из получившихся вариантов.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.