2 Примените теорему Виета, согласно которой, сумма корней уравнения будет равна числу "b", взятому с обратным знаком, а их произведение - числу "c".
Пример: В рассматриваемом уравнении b=-8, c=12, соответственно: x1+x2=8 x1∗x2=12
3 Узнайте, положительными или отрицательными числами являются корни уравнений. Если и произведение и сумма корней - положительные числа, каждый из корней - положительное число. Если произведение корней - положительное, а сумма корней – отрицательное число, то оба корня – отрицательные. Если произведение корней – отрицательное, то корни один корень имеет знак "+", а другой знак "-" В таком случае необходимо воспользоваться дополнительным правилом: "Если сумма корней – положительное число, больший по модулю корень тоже положительный, а если сумма корней - отрицательное число - больший по модулю корень - отрицательный".
Пример: В рассматриваемом уравнении и сумма, и произведение - положительные числа: 8 и 12, значит оба корня - положительные числа.
4 Решите полученную систему уравнений путем подбора корней. Удобней будет начать подбор с множителей, а затем, для проверки, подставить каждую пару множителей во второе уравнение и проверить, соответствует ли сумма данных корней решению.
Пример: x1∗x2=12 Подходящими парами корней будут соответственно: 12 и 1, 6 и 2, 4 и 3
Проверьте полученные пары с уравнения x1+x2=8. Пары 12 + 1 ≠ 8 6 + 2 = 8 4 + 3 ≠ 8
Функция возрастает на всей числовой оси (-беск; +беск).
График этой функции обычная прямая вида: у=kx+b.
Доказать возрастание можно оч. просто:
Возьмем x1 и х2 такие, что x2>x1
Подставим их в исходную функцию:
у(х1)=3/2*х1+19/2
у(х2)=3/2*х2+19/2
Очевидно, что при таким образом заданных х1 и х2 выолняется след. неравенство:
3/2*х1 < 3/2*х1
а следовательно выполняется и неравенство:
3/2*х1+19/2 < 3/2*х2+19/2, что то же самое, что и : у(х1) < у(х2).
Поскольку х1 и х2 были выбраны произвольно, то это такое неравенство выполняется для любого х, следовательно функция возрастает на всей числовой оси.
Исходя из этого сравиниваем:
f(-конень из 3)<f(-конень из 2).
Конец:)
Пример:
2 Примените теорему Виета, согласно которой, сумма корней уравнения будет равна числу "b", взятому с обратным знаком, а их произведение - числу "c".Исходное уравнение: 12 + x²= 8x
Правильно записанное уравнение: x² - 8x + 12 = 0
Пример:
3 Узнайте, положительными или отрицательными числами являются корни уравнений. Если и произведение и сумма корней - положительные числа, каждый из корней - положительное число. Если произведение корней - положительное, а сумма корней – отрицательное число, то оба корня – отрицательные. Если произведение корней – отрицательное, то корни один корень имеет знак "+", а другой знак "-" В таком случае необходимо воспользоваться дополнительным правилом: "Если сумма корней – положительное число, больший по модулю корень тоже положительный, а если сумма корней - отрицательное число - больший по модулю корень - отрицательный".В рассматриваемом уравнении b=-8, c=12, соответственно:
x1+x2=8
x1∗x2=12
Пример:
4 Решите полученную систему уравнений путем подбора корней. Удобней будет начать подбор с множителей, а затем, для проверки, подставить каждую пару множителей во второе уравнение и проверить, соответствует ли сумма данных корней решению.В рассматриваемом уравнении и сумма, и произведение - положительные числа: 8 и 12, значит оба корня - положительные числа.
Пример:
x1∗x2=12
Подходящими парами корней будут соответственно: 12 и 1, 6 и 2, 4 и 3
Проверьте полученные пары с уравнения x1+x2=8. Пары
12 + 1 ≠ 8
6 + 2 = 8
4 + 3 ≠ 8