Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²? Если а-б = 4, тогда б-а = - 4 12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)
1/2х-у = 1/2 * 4.8 - (-2.1) = 1/2 * 4 целых 8/10 + 2 целых 1/10 = 1/2 * 48/10 + 21/10 = 24/10 + 21/10 = 45/10 = 9/2 = 4 целых 1/10
г) х= -4,4. у= -3.
1/2х - у = 1/2 * (-4.4) - (-3) = - 1/2 * 4 целых 4/10 + 3 = - 1/2 * 44/10 + 3 = - 22/10 + 3/1 = - 22/10 + 30/10 = 8/10 = 4/5
27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²?
Если а-б = 4, тогда б-а = - 4
12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
28. Вычислите значение выражения:
а) ах-3у при а=10, х= -5, у= -1/3
10 * (-5) - 3(-1/3) = -50 + 1 = - 49
б) ах+bх+с при а=1/2, х=2, b=-3, с=5,8.
1/2 * 2 - 3 * 2 + 5.8 = 1 - 6 + 5.8 = 0,8