Пусть Петя загадал число x. Тогда у Васи получилось число x + 1, а у Коли — x - 1. Тогда полученное произведение имеет вид x(x + 1)(x - 1)
1 — неверно. Например, при x = 2 произведение чётное, один из множителей (x) делится на 2.
2 — верно. Докажем, что произведение всегда делится на 2: если x — чётное число, то произведение делится на 2, если x — нечётное число, то x + 1 — чётное число, и произведение также делится на 2. Докажем, что произведение всегда делится на 3: если x делится на 3, то всё произведение делится на 3, если x имеет остаток 1 при делении на 3, то x - 1 делится на 3, если x имеет остаток 2 при делении на 3, то x + 1 делится на 3 — во всех возможных случаях находится множитель, кратный трём. Значит, произведение всегда делится на 2·3 = 6.
3 — неверно. Например, при x = 2 произведение равно 6, его сумма цифр не делится на 9.
4 — неверно. Оно всегда чётное, то есть делится на 2. Доказательство приведено в п. 2.
5 — верно. Произведение всегда делится на 3 (доказательство приведено в п. 2), значит, и его сумма цифр делится на 3.
6 — верно. Доказательство приведено в п. 2.
7 — неверно. Например, при x = 1 произведение равно 1·2·0 = 0 < 1.
8 — верно. Произведение имеет вид 2021·2022·2020. 2020 делится на 4, 2022 делится на 2, значит, произведение делится на 8.
Объяснение:
1 . 5) ( x + 1 )/(x²- xy ) i ( y - 1 )/(xy - y²) ;
y*(x + 1 )/xy(x - y ) i x*(y - 1)/xy(x - y ) ;
6) 6a/(a - 2b) i 3a/( a + b ) ;
6a( a + b )/(a + b)(a - 2b ) i 3a(a - 2b)/(a + b)(a - 2b ) ;
7) ( 1 + c²)/( c² - 16 ) i c/( 4 - c ) ;
( 1 + c²)/( c² - 16 ) i - c(c + 4 )/( c² - 16 ) ;
8) ( 2m + 9 )/(m² + 5m + 25 ) i m/(m - 5 ) ;
(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 ) i m( m²+5m +25 )/(m - 5)(m²+5m +25 ).
2,5,6,8
Объяснение:
Пусть Петя загадал число x. Тогда у Васи получилось число x + 1, а у Коли — x - 1. Тогда полученное произведение имеет вид x(x + 1)(x - 1)
1 — неверно. Например, при x = 2 произведение чётное, один из множителей (x) делится на 2.
2 — верно. Докажем, что произведение всегда делится на 2: если x — чётное число, то произведение делится на 2, если x — нечётное число, то x + 1 — чётное число, и произведение также делится на 2. Докажем, что произведение всегда делится на 3: если x делится на 3, то всё произведение делится на 3, если x имеет остаток 1 при делении на 3, то x - 1 делится на 3, если x имеет остаток 2 при делении на 3, то x + 1 делится на 3 — во всех возможных случаях находится множитель, кратный трём. Значит, произведение всегда делится на 2·3 = 6.
3 — неверно. Например, при x = 2 произведение равно 6, его сумма цифр не делится на 9.
4 — неверно. Оно всегда чётное, то есть делится на 2. Доказательство приведено в п. 2.
5 — верно. Произведение всегда делится на 3 (доказательство приведено в п. 2), значит, и его сумма цифр делится на 3.
6 — верно. Доказательство приведено в п. 2.
7 — неверно. Например, при x = 1 произведение равно 1·2·0 = 0 < 1.
8 — верно. Произведение имеет вид 2021·2022·2020. 2020 делится на 4, 2022 делится на 2, значит, произведение делится на 8.