Вероятность того, что в течение года перегорит не менее трёх ламп равна сумме вероятностей того, что перегорит 3 или 4 лампы. Вероятность того, что перегорит три лампы равна P(3)=0,8^3*0,2=0,1024 Вероятность того, что перегорит три лампы равна P(4)=0,8^4=0,4096 Вероятность того, что в течение года перегорит не менее трёх ламп равна : P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы. Вероятность того, что не перегорят все 4 лампы равна P(4)=0,8^4=0,4096 Вероятность того, что перегорит не более трёх ламп равна: P(0,1,2,3)=1-0,4096=0,5904
Вероятность того, что перегорит три лампы равна
P(3)=0,8^3*0,2=0,1024
Вероятность того, что перегорит три лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что в течение года перегорит не менее трёх ламп равна :
P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы.
Вероятность того, что не перегорят все 4 лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что перегорит не более трёх ламп равна:
P(0,1,2,3)=1-0,4096=0,5904
1. 3√5 ∙√20=3√100=30
2. √32 – √18 –√2= √4√2-3√2-√2=0
3. 4х²– 9х = 0. х*(4х-9)=0⇒х=0; х=9/4=2.25, ответ 0;2.25
4. 25-24=1
5. (х²- 9)/(3х²- 9х)=(х-3)(х+3)/(3х*(х-3))=(х+3)/3х
(3+3)/(3*3)=6/(3*3)=2/3
6. По теореме Виета это свободный член и он равен -7
7. х²- х -2 = 0. По Виету х=2; х=-1
8. (х²- 3х+2)/(х²+ х-2) = 0, разложим дроби на множители. решив уравнения х²- 3х+2=0,х²+ х-2=0, для числителя по Виету х=1, х=2, по Виету для знаменателя х=-2, х=1
(х-1)(х-2)/((х+2)(х-1))=(х-2)/(х+2)=0, ⇒х=2, убеждаемся проверкой, что данный корень является корнем исходного уравнения.
ответ х=2