1) ООФ : x∈(-∞;∞) ; y =x² -3x =x² -2x*(3/2) +(3/2)² - (3/2)² = - 9/4 + (x -3/2)² . y min =9/4 , если x=3/2 . график функции _парабола, вершина в точке B(3/2 ; -9/4) иначе B(1, 5 ; - 2, 25) , ветви параболы направлены вверх . Функция убывает(↓) при x ∈( -∞;3/2] и возрастает(↑) при x ∈ [3/2 ;∞) . Пересечение с осью x : y=0⇔x² -3x=0 ⇔x(x -3) =0 ⇒x₁ =0 ,x₂ =3 . O(0;0) ,A(3;0) . Пересечение с осью y : x =0 ⇒y=0 это уже было найдена ( O(0,0) проходить через начало координат) . Bот эти три характерные точки графики. 2) y =2x -6 ; ООФ : x∈(-∞;∞) ; Возрастающая функция т.к k =2 >0 . График функции прямая линия ,следовательно достаточно задавать любые две точки. например: у =0⇔2x -6 =0⇒x =3 . A(3;0). x =0⇔у =2*x -6 = -6⇒ С(0 ; -6). Линия проходит через точки A(3;0) и С(0 ; -6).
y =x² -3x =x² -2x*(3/2) +(3/2)² - (3/2)² = - 9/4 + (x -3/2)² .
y min =9/4 , если x=3/2 . график функции _парабола, вершина в точке B(3/2 ; -9/4) иначе
B(1, 5 ; - 2, 25) , ветви параболы направлены вверх .
Функция убывает(↓) при x ∈( -∞;3/2] и возрастает(↑) при x ∈ [3/2 ;∞) .
Пересечение с осью x :
y=0⇔x² -3x=0 ⇔x(x -3) =0 ⇒x₁ =0 ,x₂ =3 .
O(0;0) ,A(3;0) .
Пересечение с осью y :
x =0 ⇒y=0 это уже было найдена ( O(0,0) проходить через начало координат) .
Bот эти три характерные точки графики.
2) y =2x -6 ;
ООФ : x∈(-∞;∞) ;
Возрастающая функция т.к k =2 >0 .
График функции прямая линия ,следовательно достаточно задавать любые две точки.
например: у =0⇔2x -6 =0⇒x =3 . A(3;0).
x =0⇔у =2*x -6 = -6⇒ С(0 ; -6).
Линия проходит через точки A(3;0) и С(0 ; -6).
a) y = x³+1, y=0, x=1, x=2.
a =1; b=2 (границы интегрирования).
S=интеграл (x³+1)dx =(x⁴/4 +x) | ₁ ² = (2⁴/4 +2) -(1⁴/4 +1) =(4+2) -(1/4+1) = 4 3/4 ≡ 4,75.
б) y=x², y=5x-4.
определим точки пересечения графиков
x² =5x -4 ;
x² -5x +4=0 ; * ** (x-1)(x-4) * * *
x₁ =1;
x₂ =4.
a =1; b=4 (границы интегрирования)
S=интеграл (5x -4 -x²)dx = ( 5x²/2 -4x -x³ /3) =(5*4²/2 -4*4 -4³ /3) - (5*1²/2 -4*1 -1³ /3) =4,5.
* * * y=5x-4 на отрезке [1;4] больше чем y=x². * * *