P=2(a+b)P=2(a+b)
S=a*bS=a∗b
Подставим вместо S и Р известные значения, и объединим эти два уравнения в систему:
\left \{ {{28=2(a+b)} \atop {48=a*b }} \right.{
48=a∗b
28=2(a+b)
\left \{ {{14=a+b} \atop {48=a*b }} \right.{
14=a+b
\left \{ {{a=14-b} \atop {48=a*b }} \right.{
a=14−b
Первое уравнение будет являться подстановкой,заменим им а во втором уравнении:
48=b*(14-b)48=b∗(14−b)
48=14b-b^248=14b−b
2
b^2-14b+48=0b
−14b+48=0
По т. Виета
b_1=6, b_2=8b
1
=6,b
=8
Подставим в подстановку вместо b;
a_1=14-6=8a
=14−6=8
a_2=14-8=6a
=14−8=6
Длины сторон нашего прямоугольника 8см и 6см
P=2(a+b)P=2(a+b)
S=a*bS=a∗b
Подставим вместо S и Р известные значения, и объединим эти два уравнения в систему:
\left \{ {{28=2(a+b)} \atop {48=a*b }} \right.{
48=a∗b
28=2(a+b)
\left \{ {{14=a+b} \atop {48=a*b }} \right.{
48=a∗b
14=a+b
\left \{ {{a=14-b} \atop {48=a*b }} \right.{
48=a∗b
a=14−b
Первое уравнение будет являться подстановкой,заменим им а во втором уравнении:
48=b*(14-b)48=b∗(14−b)
48=14b-b^248=14b−b
2
b^2-14b+48=0b
2
−14b+48=0
По т. Виета
b_1=6, b_2=8b
1
=6,b
2
=8
Подставим в подстановку вместо b;
a_1=14-6=8a
1
=14−6=8
a_2=14-8=6a
2
=14−8=6
Длины сторон нашего прямоугольника 8см и 6см
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z