1.)2х+5у=36 и 2х-5у=-44 складываете первое и второе уравнение , получили 4х=-8 х=-2 В любое уравнение подставить х=-2 , например , в первое : 2·(-2)+5у=36 -4+5у=36 5у=36+4 5у=40 у=40:5 у=8 ответ : (-2;8) 2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим -8х=-80 ( складывайте только соответствующие переменные и значения ) х=10 подставить х=10 в любое уравнение системы , например , во второе: -4·10-9у=-67 -40-9у=-67 -9у=-67+40 -9у=-27 у=-27:(-9) у=3 ответ:(10;3) 3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы 7у+(-7у)-9х+(-9х)=-90+36 -18х=-54 х=3 подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36 7у-27=36 7у=27+36 7у=63 у=63:7 у=9 ответ:(3;9)
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
4х=-8
х=-2 В любое уравнение подставить х=-2 , например , в первое :
2·(-2)+5у=36
-4+5у=36
5у=36+4
5у=40
у=40:5
у=8
ответ : (-2;8)
2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим
-8х=-80 ( складывайте только соответствующие переменные и значения )
х=10
подставить х=10 в любое уравнение системы , например , во второе:
-4·10-9у=-67
-40-9у=-67
-9у=-67+40
-9у=-27
у=-27:(-9)
у=3
ответ:(10;3)
3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы
7у+(-7у)-9х+(-9х)=-90+36
-18х=-54
х=3
подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36
7у-27=36
7у=27+36
7у=63
у=63:7
у=9
ответ:(3;9)
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж: