Для доказательства достаточно подставить вместо х предложенное значение и выяснить, будет ли равенство верным. а) х= 3 3²-4·3+3=0 9-12+3=0 0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7 2·(-7)²+(-7)-3=0 98-7-3=0 88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
(3 1/3; 3)
Объяснение:
Система уравнений:
(6-x)²+(-3-y)²=4/9 ·97
(x-2)²+(y-6)²=97/9; 4(x-2)²+4(y-6)²=4·97/9
(6-x)²+(-3-y)²-4(x-2)²-4(y-6)²=4/9 ·97 -4·97/9
(6-x)²-(2x-4)²+(3+y)²-(2y-12)²=0
(6-x-2x+4)(6-x+2x-4)+(3+y-2y+12)(3+y+2y-12)=0
(10-3x)(2+x)+(15-y)(3y-9)=0
10-3x=0; 3x=10; x₁=10/3
2+x=0; x₂=-2
15-y=0; y₁=15
3y-9=0; 3y=9; y=9/3; y₂=3
Проверка:
при x₁=10/3 и y₁=15
(10/3 -2)²+(15-6)²=97/9
(10/3 -6/3)²+81=97/9
9·16/9+9·81=97 - равенство не выполняется, так как уже 9·81>97, следовательно, корень y₁ к данной системе вообще не подходит;
при x₁=10/3 и y₂=3
(10/3 -2)²+(3-6)²=97/9
9·16/9 +9·9=97
16+81=97- равенство выполняется;
при x₂=-2 и y₂=3
(-2-2)²+(3-6)²=97/9
9(16+9)=97
9·25≠97 - равенство не выполняется, так как 9·25>97.
Отсюда следует, что единственными корнями являются:
x₁=10/3=3 1/3 и y₂=3.
а) х= 3
3²-4·3+3=0
9-12+3=0
0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7
2·(-7)²+(-7)-3=0
98-7-3=0
88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
в) х= -5
2·(-5)² - 3·(-5) - 65 =0
50+15-65 = 0
0 = 0 - верное равенство, значит, число -5 является корнем уравнения 2х² -3х-65=0.
г) х=6
6²-2·6+6=0
36-12+6 = 0
30≠0 - неверное равенство, значит, число 6 не является корнем уравнения х²-2х+6=0.