В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tiomashash
tiomashash
30.07.2021 02:49 •  Алгебра

Построить график функции ​


Построить график функции ​

Показать ответ
Ответ:
11SOS11
11SOS11
27.08.2021 14:05

Однозначно (-∞; -\frac{1}{6}) ∪ (\frac{1}{3}; +∞).

Понравился ответ? Жду лайк и 5 звезд! )))

Объяснение:

Выражение, находящееся под корнем, не может быть отрицательным. К тому же, сам корень, находясь в знаменателе, не может быть равен нулю. Объединяя эти два условия, имеем:

(3x-1)(6x+1)0

Корни в скобках \frac{1}{3} и -\frac{1}{6}

На координатной прямой это выглядело бы так:

+                                       -                        +

--------------------o------------------------o----------------------->

Корни            -\frac{1}{6}                          \frac{1}{3}

Знаки "+" стоят на промежутках (-∞; -\frac{1}{6}) ∪ (\frac{1}{3}; +∞).

0,0(0 оценок)
Ответ:
Kamjla1
Kamjla1
06.12.2022 17:36

Вообще область значений тангенса и котангенса - все действительные числа:

E(\mathrm{tg}x)=E(\mathrm{ctg}x)=(-\infty;\ +\infty)

а)

y=|\mathrm{tg}x|

Если рассмотреть модуль тангенса, то отрицательные значения примут противоположные значения, то есть станут положительными. Нулевое и положительные значения сохранятся. Получим область значений:

E(|\mathrm{tg}x|)=[0;\ +\infty)

б)

y=\mathrm{ctg}^2x

Котангенс может принять значение любого действительного числа, но при возведении любого числа в квадрат результат получится неотрицательным.

E(\mathrm{ctg}^2x)=[0;\ +\infty)

в)

y=\sqrt{\mathrm{tg}x}

Тангенс может принять значение любого действительного числа. Под знак корня из них можно записать любое неотрицательное, при этом в результате может получиться любое неотрицательное число.

E(\sqrt{\mathrm{tg}x})=[0;\ +\infty)

г)

y=\dfrac{1}{\mathrm{ctg}x}

Котангенс может принять значение любого действительного числа. При делении 1 на любое число (отличное от нуля) может получиться любое число, кроме нуля.

E\left(\dfrac{1}{\mathrm{ctg}x}\right)=(-\infty;\ 0)\cup(0;\ +\infty)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота