Пусть х - весь путь, а у - скорость первого автомоболиста, тогда:
х/у = 0,5х/(у-6) + 0,5х/56,
где
х/у - время движения первого автомобилиста,
0,5х/(у-6) + 0,5х/56 - время движения второго автомобилиста, который первую часть пути (0,5х) двигался со скоростью (у-6) км/ч, а вторую часть пути (0,5х) двигался со скоростью 56 км/ч
Разделим обе части уравнения на х и найдём у:
1/у = 0,5/(у-6) + 0,5/56
1/у = (28+0,5у-3)/[56·(у-6)]
1/у = (28+0,5у-3)/(56у-336)
Согласно освновному свойству пропорции, произведение средних равно прооизведению крайних:
56у - 336 = 28у +0,5у²-3у
0,5у²-31у+336=0
у²-62у+672=0
Согласно теореме Виета, корни приведённого квадратного уравнения равны половине второго коэффициента, взятого с противоположным знаком, плюс-минус корень квадратный из этой половины без свободного члена:
у₁,₂ = 31±√(31² - 672) = 31±√289 = 31±17
Меньшее значение у₁ = 31 - 17 = 14 км/ч отбрасываем, т.к. оно меньше 45 км/ч. Принимаем: у₂ = 31+17 = 48 км/ч
ответ: хЄ ( 1 ; 2 ) U ( 3 ; 4 ) .
Объяснение:
log₀,₅( x² - 5x + 6 ) > - 1 ; ОДЗ : x² - 5x + 6 > 0 ; D = 1 > 0 ;
рішаємо нерівність методом інтерв. x₁ =2 ; x₂ = 3 ; xЄ (- ∞ ;2)U(3 ;+ ∞ ).
log₀,₅( x² - 5x + 6 ) > log₀,₅0,5⁻¹ ;
a = 0,5 < 1 ( спадна ф - ція ) ;
{ x² - 5x + 6 < 2 , ⇒ { x² - 5x + 4 < 0 ,
{ x² - 5x + 6 > 0 ; { x² - 5x + 6 > 0 ; рішаємо нерівності :
1) x² - 5x + 4 < 0 ; D = 9 > 0 ; x₁ = 1 ; x₂ = 4 ; хЄ ( 1 ; 4 ) ;
2) x² - 5x + 6 > 0 ; D =1 > 0 ; x₁ = 2 ; x₂ = 3 ; xЄ (- ∞ ;2 )U( 3 ;+ ∞ ) .
Зобразимо проміжки на одній числовій прямій і запишемо
розв"язки : хЄ ( 1 ; 2 ) U ( 3 ; 4 ) .
48 км/ч
Объяснение:
Решение
Пусть х - весь путь, а у - скорость первого автомоболиста, тогда:
х/у = 0,5х/(у-6) + 0,5х/56,
где
х/у - время движения первого автомобилиста,
0,5х/(у-6) + 0,5х/56 - время движения второго автомобилиста, который первую часть пути (0,5х) двигался со скоростью (у-6) км/ч, а вторую часть пути (0,5х) двигался со скоростью 56 км/ч
Разделим обе части уравнения на х и найдём у:
1/у = 0,5/(у-6) + 0,5/56
1/у = (28+0,5у-3)/[56·(у-6)]
1/у = (28+0,5у-3)/(56у-336)
Согласно освновному свойству пропорции, произведение средних равно прооизведению крайних:
56у - 336 = 28у +0,5у²-3у
0,5у²-31у+336=0
у²-62у+672=0
Согласно теореме Виета, корни приведённого квадратного уравнения равны половине второго коэффициента, взятого с противоположным знаком, плюс-минус корень квадратный из этой половины без свободного члена:
у₁,₂ = 31±√(31² - 672) = 31±√289 = 31±17
Меньшее значение у₁ = 31 - 17 = 14 км/ч отбрасываем, т.к. оно меньше 45 км/ч. Принимаем: у₂ = 31+17 = 48 км/ч
ответ: 48 км/ч