Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
Считаем корни через Дискриминант и получаем t=1.6 и t =1/2 ,
t=1.6 не удовлетворяет заданному условию (-1<=t<=1)
остаётся t=1/2
sinx=1/2
x=п/6 +2пk, k принадлежичит Z
x=5п/6 +2пk, k принадлежит Z.
ответ:{п/6 +2пk;5п/6 +2пk}
2)
Такие площади находятся с интегралов.
Сначала тебе нужно взять и приравнять функцию к нулю чтобы посмотреть в каких точках график пересекает ось x
Найдешь их через дискриминант.
Та точка что будет правее это будет правой границей
А левой границей у нас будет 0, так как ограничена фигура осью y
Ищешь первообразную(надеюсь что ты умеешь это делать, если не умеешь то первообразная тут будет такая y=(x^3)/3+3x^2+9x)
Далее берешь интеграл с этой функцией( y=(x^3)/3+3x^2+9x)) с ограничениями 0 и правая граница( которую ты найдешь приравняв первоначальную функцию к нулю)
И считаешь интеграл, Подставляешь в нашу первообразную сначала верхнуюю границу(вместо x) и отнимаешь от всего этого другую границу(0)
Получаешь ответ.
Надеюсь что понятно объяснил, я бы расписал, но без понятия как обозначается интеграл в тексте.
В решении.
Объяснение:
1. Выполнить деление:
(27 + b³)/(81 - b⁴) : (b² - 3b + 9)/(b² + 9);
1) Преобразовать первую дробь:
в числителе сумма кубов, разложить по формуле:
3³ + b³ = (3 + b)(3² - 3b + b²) =
= (3 + b)(9 - 3b + b²);
В знаменателе разность кубов, развернуть:
81 - b⁴ = (9 - b²)(9 + b²);
Преобразованная первая дробь:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²);
2) Произвести деление:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²) : (b² - 3b + 9)/(b² + 9) =
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
= [(3 + b)(9 - 3b + b²) * (b² + 9)] / [(9 - b²)(9 + b²) * (9 - 3b + b²)] =
сократить (разделить) (9 - 3b + b²) и (9 - 3b + b²) на (9 - 3b + b²), (b² + 9) и )(9 + b²) на (9 + b²):
= (3 + b)/(9 - b²)=
в знаменателе разность квадратов, развернуть:
= (3 + b)/(3 - b)(3 + b)=
сократить (разделить) (3 + b) и (3 + b) на (3 + b):
= 1/(3 - b). Последний ответ.
2. Избавиться от иррациональности в знаменателе.
5/(√11 - √6);
Нужно умножить дробь (числитель и знаменатель) на сопряжённое выражение (√11 + √6):
5/(√11 - √6) * (√11 + √6)/(√11 + √6) =
= [5 * (√11 + √6)] / [ (√11 - √6) * (√11 + √6)] =
в знаменателе развёрнута разность квадратов, свернуть:
= [5 * (√11 + √6)] / [(√11)² - (√6)²] =
= [5 * (√11 + √6)] / [11 - 6] =
= [5 * (√11 + √6)] / 5 =
сократить 5 и 5 =
= (√11 + √6). Последний ответ.
3. Найти значение выражения 39a-15b+25, если (3a-6b+4)/(6a-3b+4)=7.
1) Избавиться от дробного вида второго выражения:
(3a-6b+4)/(6a-3b+4)=7
3a-6b+4 = 7(6a-3b+4)
раскрыть скобки:
3a-6b+4 = 42a - 21b + 28
привести подобные члены:
3a-6b-42+21b = 28-4
-39a+15b=24/-1
39a-15b= -24;
2) Подставить в первое выражение значение второго выражения:
39a-15b+25;
39a-15b= -24;
-24 + 25 = 1.
1) 5cos2x+21sinx =13 (формула cos2x=1-2sinx^2)
5(1-2sinx^2)+21sinx=13
5-10sinx^2+21sinx=13
10sinx^2-21sinx+8=0
Пусть sinx =t , причем -1<=t<=1
Получается квадратное уравнение
10t^2-21t+8=0
Считаем корни через Дискриминант и получаем t=1.6 и t =1/2 ,
t=1.6 не удовлетворяет заданному условию (-1<=t<=1)
остаётся t=1/2
sinx=1/2
x=п/6 +2пk, k принадлежичит Z
x=5п/6 +2пk, k принадлежит Z.
ответ:{п/6 +2пk;5п/6 +2пk}
2)
Такие площади находятся с интегралов.
Сначала тебе нужно взять и приравнять функцию к нулю чтобы посмотреть в каких точках график пересекает ось x
Найдешь их через дискриминант.
Та точка что будет правее это будет правой границей
А левой границей у нас будет 0, так как ограничена фигура осью y
Ищешь первообразную(надеюсь что ты умеешь это делать, если не умеешь то первообразная тут будет такая y=(x^3)/3+3x^2+9x)
Далее берешь интеграл с этой функцией( y=(x^3)/3+3x^2+9x)) с ограничениями 0 и правая граница( которую ты найдешь приравняв первоначальную функцию к нулю)
И считаешь интеграл, Подставляешь в нашу первообразную сначала верхнуюю границу(вместо x) и отнимаешь от всего этого другую границу(0)
Получаешь ответ.
Надеюсь что понятно объяснил, я бы расписал, но без понятия как обозначается интеграл в тексте.