1) радиус в точку касания перпендикулярен к касательной)) 2) дуга (отрезанная хордой) связана с центральным углом, опирающимся на эту дугу ---центральный угол определяет градусную меру дуги))) 3) если провести высоту в получившемся равнобедренном треугольнике, то легко вычислить искомый угол... 90°-48°=42°, 90°-42°=48° все это известно как Теорема: Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине градусной меры дуги, заключенной между его сторонами.
2) дуга (отрезанная хордой) связана с центральным углом, опирающимся на эту дугу ---центральный угол определяет градусную меру дуги)))
3) если провести высоту в получившемся равнобедренном треугольнике,
то легко вычислить искомый угол... 90°-48°=42°, 90°-42°=48°
все это известно как Теорема: Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине градусной меры дуги, заключенной между его сторонами.
Пусть по плану требовалось x машин с грузоподъемностью (60/x) тонн каждая.
В связи с ремонтом взяли (x+1) машину с грузоподъемностью 60/(x+1) тонн каждая.
Так как в каждую машину стали загружать на 3 тонны меньше,
составим уравнение:
60/x - 60/(x+1) = 3
ОДЗ:
x(x+1) от сюда следует, что
x ≠ 0 ; x ≠ - 1
60(x+1) - 60x = 3 *x(x+1)
60x + 60 - 60x = 3x² + 3x
60 = 3x² + 3x
3x² + 3x - 60 = 0 |÷3
x² + x - 20 = 0
D(дискриминант) = 1² - 4*1*(-20) = 1 + 80 = 81 = 9²
x₁ = (-1 - 9)/(2*1) = -10/2 = -5 не удовл. условию задачи
x₂ = (-1 +9)/(2*1) = 8/2 = 4 машины - требовалось по плану
4 + 1 = 5 машин - использовали на самом деле.
60: 4 = 15 тонн - грузоподъемность по плану.
1. Вначале требовалось 4 машины .
2. На самом деле использовали 5 машин.
3. Планировалось перевозить 15 тонн груза на одной машине