Х км/ ч - скорость катера в стоячей воде у км/ч - скорость течения реки (она же - скорость плота) До встречи с плотом на обратном пути катер 96 - 24 = 72 км (против течения) А плот за ЭТО же время км. 24/у - время движения плота до встречи (96/(х+у) + 72/(х-у)) - время движения катера до встречи.против течения. 1) Это одинаковое время, получим уравнение: 96/(х+у) + 72/(х-у) = 24у.
Сократим на 24 и получим: 4/(х+у) + 3/(х-у) = 1/у.
ОДЗ. х≠у; у≠0
Приведём к общему знаменателю:
Дробь равна нулю только тогда, когда числитель равен нулю. 7ху-х²=0 Сократив на х≠0, получим: 7у - х = 0 х = 7у
2) На 96 км по течению и 96 км против течения у катера ушло 14 часов. Значит, имеем второе уравнение: 96/(х+у) + 96/(х-у) = 14. Подставим вместо х его значение х = 7у 96/(7у+у) + 96/(7у-у) = 14. 96/8у + 96/6у = 14 Сократим: 12/у + 16/у = 14 28/у = 14 у = 28 : 14 у = 2 км/ч - скорость течения (или плота)
Т.к. х = 7у, находим х: х = 7 · 2 = 14 км/ч - скорость катера
Проверка. 96:(14+2)+96:(14-2)= 96:16 + 96:12 = 6 + 8 = 14 час - время, которое затратил катер на весь путь туда и обратно. ответ: 14 км/ч - скорость катера в стоячей воде; 2 км/ч - скорость течения реки.
Объем тела, полученного вращением относительно оси абсцисс дуги кривой
y=f(x) , a<=x<=b, вычисляется по формуле
b
V = π ∫ (f(x))^2 dx
a
В данном случае
1
V1 = π ∫ (x^2+1)^2 dx =
0
1 1
= π ∫(x^4 + 2 * x^2 + 1) dx = π (x^5/5 + 2*x^3/3 + x) I =
0 0
= π (1/5 + 2/3 + 1) - 0 = 28 * π/15
4 4 4
V2 = π ∫ (Vx)^2 dx = π ∫ x dx = π * x^2/2 I = π * (4^2/2 -1^2/2) = 7,5 * π
1 1 1
у км/ч - скорость течения реки (она же - скорость плота)
До встречи с плотом на обратном пути катер
96 - 24 = 72 км (против течения)
А плот за ЭТО же время км.
24/у - время движения плота до встречи
(96/(х+у) + 72/(х-у)) - время движения катера до встречи.против течения.
1)
Это одинаковое время, получим уравнение:
96/(х+у) + 72/(х-у) = 24у.
Сократим на 24 и получим:
4/(х+у) + 3/(х-у) = 1/у.
ОДЗ. х≠у; у≠0
Приведём к общему знаменателю:
Дробь равна нулю только тогда, когда числитель равен нулю.
7ху-х²=0
Сократив на х≠0, получим:
7у - х = 0
х = 7у
2)
На 96 км по течению и 96 км против течения у катера ушло 14 часов.
Значит, имеем второе уравнение:
96/(х+у) + 96/(х-у) = 14.
Подставим вместо х его значение х = 7у
96/(7у+у) + 96/(7у-у) = 14.
96/8у + 96/6у = 14
Сократим:
12/у + 16/у = 14
28/у = 14
у = 28 : 14
у = 2 км/ч - скорость течения (или плота)
Т.к. х = 7у, находим х:
х = 7 · 2 = 14 км/ч - скорость катера
Проверка.
96:(14+2)+96:(14-2)= 96:16 + 96:12 = 6 + 8 = 14 час - время, которое затратил катер на весь путь туда и обратно.
ответ: 14 км/ч - скорость катера в стоячей воде;
2 км/ч - скорость течения реки.