так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
х+х=4-2 3х-5х=-3-1 2х+3х=2+3 2х-3х=-7-3 9х-5х=-2+2
2х=2 -2х=-4 5х=5 -х=-10 4х=0
х=1 х=2 х=1 х=10 х=0
е)10-3х=2х-15 ж)10х+7=8х-9 з)53-6х=4х-17 и)8+2х=16+х
-3х-2х=-15-10 10х-8х=-9-7 -6х-4х=-17-53 2х-х=16-8
-5х=-25 -2х=-16 -10х=-70 х=8
х=5 х=8 х=7
так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6