Одна треть, Вам верно посчитали. . Вероятность равна 2*С (2,2)*С (2,0)/C(2,4)=2*1*1/6=1/3 - это используя комбинаторику. Но можно посчитать и исходя из классического определения вероятности. Каким можно вынуть два шара одного цвета? Либо кк, либо сс. Вероятность вынуть первый красный 2/4=1/2 (красных два шара из четырех) , вероятность вынуть второй красный 1/3 (один красный из оставшихся трех) , вероятность вынуть два красных равна произведению вероятностей этих событий (потому что эти события должны произойти одновременно - вероятность совпадения событий равна произведению вероятностей каждого отдельного события! ) 1/2*1/3=1/6. Вероятность вынуть ДВА СИНИХ точно такая же 1/6 (рассуждения те же, только вместо красных - синие) . А вероятность вынуть два шара одного цвета, то есть либо 2 красных, либо 2 синих, равна сумме вероятностей этих событий (поскольку нам достаточно, чтобы произошло ОДНО из ЭТИХ несовместных, то есть не могущих произойти одновременно, событий!) , то есть 1/6+1/6=2/6=1/3. ответ от решения, естественно, не изменяется. Потому что оба решения - ПРАВИЛЬНЫЕ!
375-348=27 (ВНИМАНИЕ! Всегда от большего вычитаем меньшее - то есть нельзя вычитать 348-375 !) 348-27=321 321-27=294 294-27=267 267-27=240 240-27=213 213-27=186 186-27=159 159-27=132 132-27=105 105-27=78 78-27=51 51-27=24 27-24=3 24-3=21 21-3=18 18-3=15 15-3=12 12-3=9 9-3=6 6-3=3
Итак НОД=3 1848/3=616 375/3=125
Как видим, алгоритм Евклида довольно медленный. Позже получили расширенный алгоритм Евклида, где монотонное вычитание заменили делением. Вычисление НОД расширенным алгоритмом значительно быстрее
Вероятность равна 2*С (2,2)*С (2,0)/C(2,4)=2*1*1/6=1/3 - это используя комбинаторику.
Но можно посчитать и исходя из классического определения вероятности. Каким можно вынуть два шара одного цвета? Либо кк, либо сс. Вероятность вынуть первый красный 2/4=1/2 (красных два шара из четырех) , вероятность вынуть второй красный 1/3 (один красный из оставшихся трех) , вероятность вынуть два красных равна произведению вероятностей этих событий (потому что эти события должны произойти одновременно - вероятность совпадения событий равна произведению вероятностей каждого отдельного события! ) 1/2*1/3=1/6. Вероятность вынуть ДВА СИНИХ точно такая же 1/6 (рассуждения те же, только вместо красных - синие) . А вероятность вынуть два шара одного цвета, то есть либо 2 красных, либо 2 синих, равна сумме вероятностей этих событий (поскольку нам достаточно, чтобы произошло ОДНО из ЭТИХ несовместных, то есть не могущих произойти одновременно, событий!) , то есть 1/6+1/6=2/6=1/3.
ответ от решения, естественно, не изменяется. Потому что оба решения - ПРАВИЛЬНЫЕ!
1848 375
Находим разность:
1848-375=1473
Теперь получили числа:
1473 375
Находим разность
1473-375=1098 и т.д:
1098-375=723
723-375=348
375-348=27
(ВНИМАНИЕ! Всегда от большего вычитаем меньшее - то есть нельзя вычитать 348-375 !)
348-27=321
321-27=294
294-27=267
267-27=240
240-27=213
213-27=186
186-27=159
159-27=132
132-27=105
105-27=78
78-27=51
51-27=24
27-24=3
24-3=21
21-3=18
18-3=15
15-3=12
12-3=9
9-3=6
6-3=3
Итак НОД=3
1848/3=616
375/3=125
Как видим, алгоритм Евклида довольно медленный.
Позже получили расширенный алгоритм Евклида, где монотонное вычитание заменили делением. Вычисление НОД расширенным алгоритмом значительно быстрее