Наличие искомых клеток возможно только при соприкасающихся прямоугольниках.
Объяснение:
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках. Предположим, что мы имеем не соприкасающиеся прямоугольника, значит вокруг каждого прямоугольника мы имеем как минимум 3 пустых клетки. Следовательно, общая площадь доски должна быть: 85 клеток, что противоречит условию, т.к. размер поля 8*8=64. Следовательно обязательно имеются смежные прямоугольники, т.е. найдутся 2 клетки, имеющие общую сторону, лежащие в каждом из этих прямоугольников.
Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках.
Объяснение:
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках. Предположим, что мы имеем не соприкасающиеся прямоугольника, значит вокруг каждого прямоугольника мы имеем как минимум 3 пустых клетки. Следовательно, общая площадь доски должна быть: 85 клеток, что противоречит условию, т.к. размер поля 8*8=64. Следовательно обязательно имеются смежные прямоугольники, т.е. найдутся 2 клетки, имеющие общую сторону, лежащие в каждом из этих прямоугольников.
Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
S20= (a1 + a20)/2 * 20 = (5 + 62)/2 * 20 = 67/2 * 20 = 67 * 10= 670.
Объяснение: