В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Татьяна4222
Татьяна4222
14.03.2021 16:46 •  Алгебра

Построить графики функции: 1) y=-1/5x 2) y=7x 3) y=-0,8x
Очень надо

Показать ответ
Ответ:
angelochekbobi
angelochekbobi
07.09.2021 01:41
X+y^2=3
x^4+y^4+6x=29
Решать будем подстановкой. Подстановку сделаем из 1-го уравнения:
у² = 3 - х
Подставим во 2-е уравнение. Получим:
х⁴ +(3 -x)²  +6x -29 = 0
x⁴ +9 -6x  + x² +6x -29= 0
x⁴ +x² -20 = 0
Это биквадратное уравнение. х² = t
t² + x - 20 = 0
По т. Виета  t₁ = -5,    t₂ = 4
x² = t
a) x² = -5
нет решений.
б) х² = 4
х = +-2
Теперь будем х = +- 2 подставлять в 1-е уравнение ( можно и во 2-е)
2 + у² = 3                  -2 +у² = 3
у² = 1                          у² = 5
у = +-1                        у = +-√5
 ответ(2;1); (2;-1); (-2;√5); (-2; -√5) 
0,0(0 оценок)
Ответ:
ждл1
ждл1
19.03.2022 18:50
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота