Построй график функции y=x и по графику определи координаты точки пересечения графика функции с осью Oy. 1) Заполни таблицу.
2) Используя таблицу, построй график функции и сравни его с данным в шагах решения.
3) Определи координаты точки пересечения с осью Oy.
1) Таблица:
x -1 0 1
y
2) График.
3) Точка пересечения с осью Oy:
( ) ; ( )
k-кутовий коефіцієнт
В умові задачі нам дана арифметична прогресія, усі члени якої є натуральними, двоцифровим числами , які кратні числу 4
Перший член цієї прогресії - 12 (так як число 12 є двоцифровим і ділиться на 4 без залишку)
Другий член цієї прогресії - 16 (16=4*4)
знайдемо різницю арифметичної прогресії.
16-12=4
d=4
Тепер необхідно знайти число, яке менше від 41 і ділиться на 4.
Це число 40 (40=4*10)
Найдемо суму членів ап
- перший член
- у даному випадку останній член (40)
k=-208
Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.
Формула
d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.
Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.
Дифференцируем
Для упрощения производной запишем х^х как e^( ln(x^x) ).
И опять сложная функция.
Дифференцируем её аналогично:
f(x) = e^x, g(x) = xln(x)
Заменим xln(x) перевенной k:
За правилом производной произведения имеем:
Вычисляем все производные и получаем:
Это и есть ответ.