Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.
По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.
Определение 2
Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.
Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для
7
класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.
Программа
8
класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.
Что представляет собой тождество
Начнем с определения понятия тождества.
Определение 1
Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.
По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.
Определение 2
Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.
Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для
7
класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.
Программа
8
класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.
х ∈ (-0,5; +∞)
Объяснение:
|2x+5|-1<6x-2
1) 2x+5 ≥ 0 (2x ≥ 5 или х ≥ 2,5 ) ⇒ |2x+5| = 2x+5
|2x+5|-1<6x-2 ⇒ 2x+5 -1<6x-2
2х + 4 < 6x - 2
4 + 2 < 6x - 2x
6 < 4x
6/4 < x
1,5 < x или х > 1,5 (ОДЗ: х≥ 2,5) ⇒ решение данной части: х ∈ [2,5; +∞)
2) 2x+5 < 0 (2x < 5 или х < 2,5 ) ⇒ |2x+5| = -(2x+5)
|2x+5|-1<6x-2 ⇒ -(2x+5) -1<6x-2
-2x-5 -1<6x-2
-2х -6 < 6x - 2
-6 + 2 < 6x + 2x
-4 < 8x
-4/8 < x
-0,5 < x или х > -0,5 (ОДЗ: х < 2,5) ⇒ решение данной части: x ∈ (-0,5;2,5)
объединяя решение первой части (х ∈ [2,5; +∞)) и второй (x ∈ (-0,5;2,5)) получаем общее решение х ∈ (-0,5; +∞)