Находим скалярное произведение векторов АВ и АС. Сначала в координатах. Скалярное произведение равно сумме произведений одноименных координат. Вектор АВ имеет координаты {9-4; 1-6; 3-5}={5;-5;-2} Вектор АC имеет координаты {2-4; 10-6; 10-5}={-2;4;5} Скалярное произведение АВ на АС равно 5*(-2)+(-5)*4+(-2)*5=-10-20-10=-40 С другой стороны скалярное произведение равно произведению длин векторов на косинус угла между ними Длина АВ равна корню квадратному из суммы квадратов координат √(5²+(-5)²+(-2)²)=√54=3√6 Длина АС √((-2)²+4²+5²)=√(4+16+25)=√45=3√5 cos A=-40/3√6·3√5=-40/9√30=-40√30/270=-4√30/27 угол А равен arccos (-4√30/27)
Сначала в координатах. Скалярное произведение равно сумме произведений одноименных координат.
Вектор АВ имеет координаты {9-4; 1-6; 3-5}={5;-5;-2}
Вектор АC имеет координаты {2-4; 10-6; 10-5}={-2;4;5}
Скалярное произведение АВ на АС равно
5*(-2)+(-5)*4+(-2)*5=-10-20-10=-40
С другой стороны скалярное произведение равно произведению длин векторов на косинус угла между ними
Длина АВ равна корню квадратному из суммы квадратов координат
√(5²+(-5)²+(-2)²)=√54=3√6
Длина АС
√((-2)²+4²+5²)=√(4+16+25)=√45=3√5
cos A=-40/3√6·3√5=-40/9√30=-40√30/270=-4√30/27
угол А равен arccos (-4√30/27)
√((x+20)/x) -√(-(x -20)/x) = 6 ;
ОДЗ :{ (x+20)/x ≥ 0 ;(x-20)/x ≤0. { x∈ (-∞; -20] U (0;∞) ; x∈( 0;20]. ⇔ x∈( 0;20].
или
√(20/x +1) = 6 +√(20/x -1) ;
(√(20/x +1))² = (6 +√(20/x -1))² ;
20/x +1 = 36 +12√(20/x -1) + 20/x -1
√(20/x -1) = -17/6 невозможно (√ ≥ 0) ;
8
2). √(20/x +1) + √(20/x -1) = √6 ;
ОДЗ : x∈( 0;20] смотри предыдущий пункт .
√(20/x +1) = √6 - √(20/x -1) ;
(√(20/x +1))² = (√6 - √(20/x -1))² ;²
20/x +1 = 6 -2√6*√(20/x -1) +20/x -1 ;
2√6*√(20/x -1) = 4 ;
√6*√(20/x -1) =2 ;
6*(20/x -1) = 4 ;
20/x -1 = 2/3 ;
20/x = 5/3 ;
4/x =1/3 ;
x=12 ∈ ОДЗ .
ответ:12 .
проверка
√(20/12 +1) + √(20/12 -1) = √16/6 +√4/6 =4/√6 + 2/√6 =6/√6=√6.