Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.
Для начала вспомним что такое D(f) и E(f)
1 ) Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f)
Т.е. Это все допустимые значения которые может принимать "х"
2) Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f)
Т.е. это все допустимые значений которые может принимать "у" в зависимости от "х"
Теперь рассмотрим нашу функцию
f(x)=x²+1
Есть ли такие "х" которые нельзя было бы подставить в нашу функцию и найти значение переменной "у"? - НЕТ
так что х∈(-∞;+∞)
теперь рассмотрим у
при х=0; у=0+1=1
при х=1; у=1+1=2
при х= -1; у=(-1)²+1=1+1=2
Значит все возможные значения у∈[1;+∞)
теперь поставим знаки
1) 3 ∈ D (f)
2) 0 ∈ D (f)
3) 1/2 ∉ E (f)
4) 1.01 ∈ E (f)
Объяснение:
Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.
Для начала вспомним что такое D(f) и E(f)
1 ) Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f)
Т.е. Это все допустимые значения которые может принимать "х"
2) Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f)
Т.е. это все допустимые значений которые может принимать "у" в зависимости от "х"
Теперь рассмотрим нашу функцию
f(x)=x²+1
Есть ли такие "х" которые нельзя было бы подставить в нашу функцию и найти значение переменной "у"? - НЕТ
так что х∈(-∞;+∞)
теперь рассмотрим у
при х=0; у=0+1=1
при х=1; у=1+1=2
при х= -1; у=(-1)²+1=1+1=2
Значит все возможные значения у∈[1;+∞)
теперь поставим знаки
1) 3 ∈ D (f)
2) 0 ∈ D (f)
3) 1/2 ∉ E (f)
4) 1.01 ∈ E (f)
Объяснение: