Рассмотрим сам многочлен в общим виде , для этого откинем по условию он должен быть, квадратом некого многочлена. Заметим что в этом многочлене есть , а он не возможен при квадрате , и заметим то что старшая степень равна . Тогда наш многочлен есть двучлен вида . Что есть частный случаи многочлена. Тогда запишем То есть
Заметим что так как оно противоречит условию что не имеет решений.
Рассмотрим функцию очевидно . То есть наше значение . Что согласуется с значение . Заметим что при Выше было сказано при каких значениях это справедливо , заметим что
Тогда Так же с обратным значением оно равно ответ Сам многочлен
1) Находим первую производную функции: y' = 2x+1 Приравниваем ее к нулю: 2x+1 = 0 x1 = -1/2 Вычисляем значения функции f(-1/2) = 3/4 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 2 Вычисляем: y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции: y' = e^x/x-e^x/x^2 или y' = ((x-1)•e^x)/x^2 Приравниваем ее к нулю: ((x-1)•e^x)/x^2 = 0 x1 = 1 Вычисляем значения функции f(1) = e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = e^x/x-2e^x/x^2+2e^x/x^3 или y'' = ((x^2-2x+2)•e^x)/x^3 Вычисляем: y''(1) = e>0 - значит точка x = 1 точка минимума функции.
по условию он должен быть, квадратом некого многочлена.
Заметим что в этом многочлене есть , а он не возможен при квадрате , и заметим то что старшая степень равна .
Тогда наш многочлен есть двучлен вида . Что есть частный случаи многочлена.
Тогда запишем
То есть
Заметим что так как оно противоречит условию что не имеет решений.
Рассмотрим функцию очевидно .
То есть наше значение . Что согласуется с значение
.
Заметим что при
Выше было сказано при каких значениях это справедливо , заметим что
Тогда
Так же с обратным значением оно равно
ответ
Сам многочлен
y' = 2x+1
Приравниваем ее к нулю:
2x+1 = 0
x1 = -1/2
Вычисляем значения функции
f(-1/2) = 3/4
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2
Вычисляем:
y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции:
y' = e^x/x-e^x/x^2
или
y' = ((x-1)•e^x)/x^2
Приравниваем ее к нулю:
((x-1)•e^x)/x^2 = 0
x1 = 1
Вычисляем значения функции
f(1) = e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = e^x/x-2e^x/x^2+2e^x/x^3
или
y'' = ((x^2-2x+2)•e^x)/x^3
Вычисляем:
y''(1) = e>0 - значит точка x = 1 точка минимума функции.