В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Tittans101
Tittans101
18.09.2020 14:40 •  Алгебра

Постройте график данной функции Определите, при каких значениях k прямая y = kx имеет с графиком ровно одну общую точку


Постройте график данной функции Определите, при каких значениях k прямая y = kx имеет с графиком ров

Показать ответ
Ответ:
Muxaska123
Muxaska123
27.10.2021 20:11
Множество целых чисел \mathbb{Z} разделим на три класса:
\mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, где + обозначает операцию объединения и изначает, что множества \mathbb{Z}_0,\mathbb{Z}_1,\mathbb{Z}_2, дисъюнктны.
\mathbb{Z}_0 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3}\}
\mathbb{Z}_1 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+1}\}
\mathbb{Z}_2 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+2}\}
Данное разделение множества целых чисел существует по принципу решета Эрастофена.
x \equiv 0\ \ (mod 6) \Leftrightarrow x \equiv 0 \ \ (mod 2) \land x \equiv 0 \ \ (mod3)
x^3 + 41x = x(x^2 + 41).
Так как при четном x выражение делится на два, а при нечетном x^2 + 41 делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3:
Так как x \in \mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, то рассмотрим три случая:
1) x \in \mathbb{Z}_0 \Rightarrow x^3 + 41x \equiv 0 \ \ (mod 3) так как x^3 + 41x = x(x^2+41).
2) x \in \mathbb{Z}_1 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 1}
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 1 + 41 = 3*m + 42 = 3*n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
3) x \in \mathbb{Z}_2 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 2}.
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 4 + 41 = 3m + 45 = 3n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
Тогда для всех x \in \mathbb{Z} выражение x^3+41x делится на 6.
0,0(0 оценок)
Ответ:
Лесолес
Лесолес
06.05.2023 23:10

ответы:

1 - тапсырма

а)

ə)

<strong>a</strong><strong>-</strong><strong>3</strong><strong>}{</strong><strong>b</strong><strong>} " class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%20%5Cfrac%7B%3C%2Fstrong%3E%3Cstrong%3Ea%3C%2Fstrong%3E%3Cstrong%3E-%3C%2Fstrong%3E%3Cstrong%3E3%3C%2Fstrong%3E%3Cstrong%3E%7D%7B%3C%2Fstrong%3E%3Cstrong%3Eb%3C%2Fstrong%3E%3Cstrong%3E%7D%20" title=" \frac{</strong><strong>a</strong><strong>-</strong><strong>3</strong><strong>}{</strong><strong>b</strong><strong>} ">

2 тапсырма

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота