Решим задачу на нахождение времени, скорости, расстояния Дано: S=140 км v₁=v₂+6 км/час t₁=t₂ - 3 ч Найти: v₂=? км/час Решение 1) Пусть скорость второго велосипедиста равна v₂=х км/час, тогда скорость первого составляет v₁=v₂+6=x+6 км/час. Первый велосипедист проехал на 3 часа меньше второго и всего был в пути: t(время)=S(расстояние)÷v(скорость) = 140/(х+6) часов. Второй велосипедист затратил на 3 часа больше и был в пути: 140/х часов. Составим и решим уравнение: 140/х - 140/(х+6)=3 (умножим все члены на х(х+6), чтобы избавиться от дроби) 140×х(х+6)/х - 140×х(х+6)/(х+6)=3×х(х+6) 140(х+6)-140х=3х²+18х 140х+840-140х=3х²+18х 3х²+18x-840=0 D=b²-4ac=18²-4×3×(-840)=324+10080=10404 (√D=102) х₁=(-b+√D)/2a=(-18+102)/2×3=84/6=14 (км/час) х₂=(-b -√D)/2a=(-18-102)/2×3=-120/6= - 20 (х₂<0 - не подходит) Значит скорость второго велосипедиста, пришедшего к финишу вторым (на 3 часа позже) составляет 14 км/час. ОТВЕТ: скорость велосипедиста, пришедшего к финишу вторым равна 14 км/час.
Пусть х - расстояние от второго города до места встречи, тогда 93 - х - расстояние от первого города до места встречи. Учитывая, что время t1 первого велосипедиста на 56 минут (56/60 часа) больше времени t2 второго велосипедиста, составим и решим уравнение: t1 + 56/60 = t2, (93 - x)/20 + 56/60 = x/30, (335 - 3x)/60 = x/30, по пропорции имеем 30(335 - 3x) = 60x, -90x + 10050 = 60x, -90x - 60x = -10050, -150x = -10050, x = -10050 : (-150) = 67 (км) - расстояние от второго города до места встречи. ОТВЕТ: 67 км.
Дано:
S=140 км
v₁=v₂+6 км/час
t₁=t₂ - 3 ч
Найти:
v₂=? км/час
Решение
1) Пусть скорость второго велосипедиста равна v₂=х км/час, тогда скорость первого составляет v₁=v₂+6=x+6 км/час.
Первый велосипедист проехал на 3 часа меньше второго и всего был в пути: t(время)=S(расстояние)÷v(скорость) = 140/(х+6) часов.
Второй велосипедист затратил на 3 часа больше и был в пути: 140/х часов.
Составим и решим уравнение:
140/х - 140/(х+6)=3 (умножим все члены на х(х+6), чтобы избавиться от дроби)
140×х(х+6)/х - 140×х(х+6)/(х+6)=3×х(х+6)
140(х+6)-140х=3х²+18х
140х+840-140х=3х²+18х
3х²+18x-840=0
D=b²-4ac=18²-4×3×(-840)=324+10080=10404 (√D=102)
х₁=(-b+√D)/2a=(-18+102)/2×3=84/6=14 (км/час)
х₂=(-b -√D)/2a=(-18-102)/2×3=-120/6= - 20 (х₂<0 - не подходит)
Значит скорость второго велосипедиста, пришедшего к финишу вторым (на 3 часа позже) составляет 14 км/час.
ОТВЕТ: скорость велосипедиста, пришедшего к финишу вторым равна 14 км/час.
Проверим:
140÷14=10 (часов) - 2-ый велосипедист
140:(14+6)=140÷20=7 (часов) - 1-ый влосипедист
10-7=3 часа разницы
t1 + 56/60 = t2,
(93 - x)/20 + 56/60 = x/30,
(335 - 3x)/60 = x/30,
по пропорции имеем
30(335 - 3x) = 60x,
-90x + 10050 = 60x,
-90x - 60x = -10050,
-150x = -10050,
x = -10050 : (-150) = 67 (км) - расстояние от второго города до места встречи.
ОТВЕТ: 67 км.