2)Пусть число кроликов во второй клетке - x. тогда в первой клетке число кроликов = 4x. По условию, мы отнимаем 24 кролика из первой клетки, значит, их число стало в 1 клетке 4x-24, а во второй клетке стало x+24 кролика. зная, что число их стало поровну после этого, составлю уравнение:
1) а) х + 11,5 = 10,5
х=11,5 + 10,5
х=1
б) 5=8 - 3х
5= 5х
х= 5 : 5
х=1
в) 6х+7=3+2х
6х+7=5х
6х=7-5
6х=2х
х=6 :2
х= 3
г) извини не могу решить
2)Пусть число кроликов во второй клетке - x. тогда в первой клетке число кроликов = 4x. По условию, мы отнимаем 24 кролика из первой клетки, значит, их число стало в 1 клетке 4x-24, а во второй клетке стало x+24 кролика. зная, что число их стало поровну после этого, составлю уравнение:
4x-24 = x+24
3x = 48
x= 16 - столько кроликов во второй клетке
16 * 4 = 64 кроликов в первой клетке.
b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
q=-20/-40=-10/-20=0.5
S(n)=-40(0.5^n-1)/(0.5-1)
S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8. Найти S(8)
(b3)^2=1.2*4.8=5.76
b3=√5.76=2.4
q=4.8/2.4=2.4/1.2=2
b1=1.2/2=0.6
S(8)=0.6(2^8-1)/(2-1)
S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
k=3
m=0
a=153
b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
k=1
m=1
a=32
b=3
0+((32-3)/90)=29/90