Решение: Обозначим скорость грузовика за (х) км/час, тогда двигаясь бы без остановки он потратил время в пути: 80/х час, а с увеличением скорости грузовик потратил время в пути: 80/(х+10)час, а так как он потратил в пути меньшее время, так как останавливался на 24мин или 2/5 часа, то составим уравнение: 80/х - 80/(х+10)=2/5 Приведём уравнение к общему знаменателю: (х)*(х+10)*5 5*(х+10)*80 - 5*х*80=х*(х+10)*2 400х+4000-400х=2х²+20х 2х²+20х-4000=0 Сократим это уравнение на 2 х²+10х-2000=0 - приведённое квадратное уравнение х1,2=-5+-√(25+2000)=-5+-√2025=-5+-45 х1=-5+45=40 (км\час) х2=-5-45=-50-не соответствует условию задачи На участке 80 км грузовик двигался со скоростью: 40 + 10=50 (км/час)
Здесь - след матрицы, то есть сумма диагональных элементов, - знак транспонирования. Соответственно квадрат длины вектора (то есть матрицы A) равен
Ортонормированным базисом будет, например, базис, состоящий из матриц, у которых на одном месте стоит 1, а на остальных местах стоят нули. Только нужно помнить, что базис - это УПОРЯДОЧЕННЫЙ набор векторов (естественно, линейно независимых, через которые можно линейно выразить любой вектор этого пространства), поэтому Вы должны указать, в каком порядке эти матрицы будете располагать. Скажем, сначала матрица , у которой в пересечении первой строчки и первого столбца стоит единица, а остальные нули, потом матрицы далее переходим на вторую строчку и так далее до последней матрицы .
В случае скалярное произведение задается по той же формуле, только у второй матрицы элементы нужно заменить на комплексно сопряженные:
.
А ортонормированный базис будут образовывать те же матрицы
Обозначим скорость грузовика за (х) км/час, тогда двигаясь бы без остановки он потратил время в пути:
80/х час,
а с увеличением скорости грузовик потратил время в пути:
80/(х+10)час,
а так как он потратил в пути меньшее время, так как останавливался на 24мин или 2/5 часа, то составим уравнение:
80/х - 80/(х+10)=2/5
Приведём уравнение к общему знаменателю: (х)*(х+10)*5
5*(х+10)*80 - 5*х*80=х*(х+10)*2
400х+4000-400х=2х²+20х
2х²+20х-4000=0 Сократим это уравнение на 2
х²+10х-2000=0 - приведённое квадратное уравнение
х1,2=-5+-√(25+2000)=-5+-√2025=-5+-45
х1=-5+45=40 (км\час)
х2=-5-45=-50-не соответствует условию задачи
На участке 80 км грузовик двигался со скоростью:
40 + 10=50 (км/час)
ответ: 50км/час
Здесь - след матрицы, то есть сумма диагональных элементов, - знак транспонирования. Соответственно квадрат длины вектора (то есть матрицы A) равен
Ортонормированным базисом будет, например, базис, состоящий из матриц, у которых на одном месте стоит 1, а на остальных местах стоят нули. Только нужно помнить, что базис - это УПОРЯДОЧЕННЫЙ набор векторов (естественно, линейно независимых, через которые можно линейно выразить любой вектор этого пространства), поэтому Вы должны указать, в каком порядке эти матрицы будете располагать. Скажем, сначала матрица , у которой в пересечении первой строчки и первого столбца стоит единица, а остальные нули, потом матрицы далее переходим на вторую строчку и так далее до последней матрицы .
В случае скалярное произведение задается по той же формуле, только у второй матрицы элементы нужно заменить на комплексно сопряженные:
.
А ортонормированный базис будут образовывать те же матрицы