В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lechyktvoeimamke
lechyktvoeimamke
20.05.2023 23:14 •  Алгебра

Постройте график функции с таблицей y=i\frac{3}{x-1}-4i

Показать ответ
Ответ:
znj93294znj93294
znj93294znj93294
22.06.2020 11:42
Я так думаю, здесь всё объединено?!
Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1
{y - x = 9 |*(-1)
{7y - x = - 3
Получаем:
{ -у +х = -9
{ 7у - х = -3
Условно ставим между этими примерами знак "+", крч прибавляем. Т.к.
значения х (иксов) противоположные - они само-уничтожаются. Выходит:
6у = -12
у = -12 : 6
у = -2
Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример:
{у - х = 9
{у = -2
-2 - х = 9
-х = 9+2
{х = -11
{у= -2
ответ: (-11; - 2)
P.S. пыталась максимально доступно объяснить.
0,0(0 оценок)
Ответ:
povitnitskiy
povitnitskiy
30.10.2020 10:36
(xcos(y)-ysin(y))dy+(x+sin(y)+ycos(y))dx=0
xsin(y)+ycos(y)+dy(xcos(y)-ysin(y))=0
Допустим, R(x,y)=xsin(y)+ycos(y) и S(x,y)=xcos(y)-ysin(y).
Это не строгое уравнение,т.к. R'(x,y)=xcos(y)-ysin(y)+cos(y)≠cos(y)=
dS(x,y).
Найдем интегрирующий фактор u(x), такой что u(x)*R(x,y)+u(x)dy*
S(x,y)=0.
Это означает: (u*R(x,y))'=d(u(x)*S(x,y)):
(cos(y)+xcos(y)-ysin(y)u(x)=du(xcos(y)-ysin(y))+cos(y)u(x)
\frac{du}{u}=1
ln(u)=1
u=e^x
e^x(xsin(y)+ycos(y))+(e^x(xcos(y)-ysin(y))dy=0

Допустим, P(x,y)=e^x(xsin(y)+ycos(y)) и Q(x,y)=e^x(xcos(y)-ysin(y)).
Это строгое уравнение,т.к. P'(x,y)=e^x(xcos(y)-ysin(y)+cos(y))=dQ(x,y).
Введем f(x,y), такой что df(x,y)=P(x,y) и f'(x,y)=Q(x,y):
Затем, решение будет для f(x,y)=c1, где c1- произвольная переменная.
f(x,y)=\int{e^x(ycos(y)+xsin(y)} dx=e^x(ycos(y)+sin(y)(x-1)+g(y);
где g(y)- некоторая функция от y.
f'(x,y)=(e^x(ycos(y)+sin(y)(x-1))+g(y))'=
=e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)
Сделаем замену f'(x,y)=Q(x,y):
e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)=e^x(xcos(y)-ysin(y))
Возьмем g'(y):
g'(y)=0
g(y)=\int0\ dy=0
Подставим g(y) к f(x,y):
f(x,y)=e^x(ycos(y)+sin(y)(x-1))
Получаем решение:
e^x(ycos(y)+sin(y)(x-1))=c_1
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота