По условию необходимо найти числа, кратные 5. Значит, последней цифрой искомых чисел может быть 0 или 5.
1. В первом случае, когда число заканчивается цифрой 0, остальные 4 цифры можно выбирать из множества девяти цифр {1,2,3,...8,9}.
В решении используем размещения, так как порядок элементов важен, ведь поменяв местами цифры, числа изменятся.
Размещением из n элементов по m элементов (m≤n) называется упорядоченная выборка элементов m из данного множества элементов n.
Размещения вычисляются по формуле Amn=n!(n−m)!
По формуле получим число вариантов A49=9!(9−4)!=3024
2. Если число oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1,2,3,4,6,7,8,9 — нельзя использовать 0, т.к. число должно быть 5-значным.
Цифры со второй по 4 можно выбрать A38=8!(8−3)!=336 различными Следовательно, по правилу произведения имеется 8⋅A38 чисел, оканчивающихся цифрой 5.
По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи A49+8⋅A38=3024+8⋅336=5712
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
По условию необходимо найти числа, кратные 5. Значит, последней цифрой искомых чисел может быть 0 или 5.
1. В первом случае, когда число заканчивается цифрой 0, остальные 4 цифры можно выбирать из множества девяти цифр {1,2,3,...8,9}.
В решении используем размещения, так как порядок элементов важен, ведь поменяв местами цифры, числа изменятся.
Размещением из n элементов по m элементов (m≤n) называется упорядоченная выборка элементов m из данного множества элементов n.
Размещения вычисляются по формуле Amn=n!(n−m)!
По формуле получим число вариантов A49=9!(9−4)!=3024
2. Если число oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1,2,3,4,6,7,8,9 — нельзя использовать 0, т.к. число должно быть 5-значным.
Цифры со второй по 4 можно выбрать A38=8!(8−3)!=336 различными Следовательно, по правилу произведения имеется 8⋅A38 чисел, оканчивающихся цифрой 5.
По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи A49+8⋅A38=3024+8⋅336=5712
ответ: 5712