Постройте график функции у = –2 х. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно: 2; – 1 ; 0,5;
2) значение аргумента, при котором значение функции равно: –4; 2;
3) значения аргумента, при которых функция принимает положительные
значения.
t=12/5
k=22/5
Объяснение:
k/3+t/2=8/3
k/2+t/3=3
Избавляемся от дробного выражения, общий знаменатель для первого и второго уравнения 6, надписываем над числителями дополнительные множители:
2*k+3*t=2*8
3*k+2*t=6*3
2k+3t=16
3k+2t=18
Выразим k через t в первом уравнении и подставим выражение во второе уравнение:
2k+3t=16
2k=16-3t
k=(16-3t)/2
3[(16-3t)/2]+2t=18
Умножим второе уравнение на 2, чтобы избавиться от дробного выражения:
3(16-3t)+4t=36
48-9t+4t=36
-5t=36-48
-5t= -12
t=12/5
k=(16-3*12/5)/2
k=(16-7,2)/2=22/5
k=22/5
При проверке данных значений в первом уравнении 8/3=8/3, во втором 3=3, значения k и t вычислены верно.
Поскольку ветки парабол направлены вниз, то вершины парабол расположены либо выше оси абсцисс при условии, что D > 0, либо ниже оси абсцисс, если D < 0.
1) D > 0;
Имеем систему неравенств:
64p² + 4p > 0 и 64p² + 16 > 0
p(16p + 1) > 0 и 4p² + 1 > 0 второе неравенство удовлетворяют все действительные числа, поэтому система равносильна первому неравенству.
p(16p + 1) > 0; p(16p + 1) = 0; p₁ = 0; p₂ = -1/16.
-1/16 0>
p∈(-∞; -1/16)U(0; ∞)
При p∈(-∞; -1/16)U(0; ∞) вершины парабол расположены выше оси абсцисс
2) D < 0 исключается, поскольку у второй функции дискриминант положителен и её вершина располагается выше оси абсцисс.