ответ:1) Задание
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+-+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
Объяснение:
Обозначим за Х количество мест в ряду в 1-м зале
Тогда (Х+10) - количество мест в ряду во 2-м зале
420/Х - количество рядов в 1-м зале
480/(Х+10) - количество рядов во 2-м зале
420/Х-480/(Х+10)=5
приводим левую часть уравнения к общему знаменателю и складываем:
(420Х+4200-480Х)/Х(Х+10)=5
(4200-60Х)/(Х²+10Х)=5
делим обе части уравнения на 5:
(840-12Х)/(Х²+10Х)=1, или имеем право записать как:
840-12Х=Х²+10Х
Х²+22Х-840=0
Решая полученное квадратное уравнение, находим, что:
Х₁=20
Х₂=-42 данный корень не удовлетворяет условию задачи, поскольку количество мест в ряду не может быть отрицательным.
20 мест в ряду в 1-м зале
30 мест в ряду во 2-м зале (на 10 мест больше, чем в ряду первого зала)
21 ряд в 1-м зале
16 рядов во 2-м зале (на 5 рядов меньше, чем в первом зале
ответ:1) Задание
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+-+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
Объяснение:
Объяснение:
Обозначим за Х количество мест в ряду в 1-м зале
Тогда (Х+10) - количество мест в ряду во 2-м зале
420/Х - количество рядов в 1-м зале
480/(Х+10) - количество рядов во 2-м зале
420/Х-480/(Х+10)=5
приводим левую часть уравнения к общему знаменателю и складываем:
(420Х+4200-480Х)/Х(Х+10)=5
(4200-60Х)/(Х²+10Х)=5
делим обе части уравнения на 5:
(840-12Х)/(Х²+10Х)=1, или имеем право записать как:
840-12Х=Х²+10Х
Х²+22Х-840=0
Решая полученное квадратное уравнение, находим, что:
Х₁=20
Х₂=-42 данный корень не удовлетворяет условию задачи, поскольку количество мест в ряду не может быть отрицательным.
20 мест в ряду в 1-м зале
30 мест в ряду во 2-м зале (на 10 мест больше, чем в ряду первого зала)
21 ряд в 1-м зале
16 рядов во 2-м зале (на 5 рядов меньше, чем в первом зале