Решение: Обозначим количество конфет по цене 110руб за (х) кг, а количество конфет по цене 150руб за (1кг-х) кг Тогда конфеты по цене 110руб стоят на 110*х=110 руб, а конфеты по цене 150 руб стоят на 150*(1-х)=(150-150х) руб А так как общее количество конфет составило 1 кг, составим уравнение: [110х +(150-150х) ] /1=120 110х+150-150х=120 110х-150х=120-150 -40х=-30 х=-30 : -40 х=3/4=0,75кг (куплено по цене 110руб за 1кг) или 0,75кг 1-3/4=4/4-3/4=1/4=0,25 кг (куплено по цене 150 руб за 1кг) или 0,25кг
ответ: В 1кг смеси конфет содержится 0,75кг по цене 110руб и 0,25кг по цене 150руб
-3
Объяснение:
Хорошо, что дали картинку, потому что текстом вы написали полную кашу, в которой ничего непонятно.
(7x+3y)/(x+5y) + (3x-2y)/(2x+y) = 4
Можно попробовать выразить y через x.
Умножим все на (x+5y)(2x+y) и избавимся от дробей.
(7x+3y)(2x+y) + (3x-2y)(x+5y) = 4(x+5y)(2x+y)
14x^2 + 6xy + 7xy + 3y^2 + 3x^2 - 2xy + 15xy - 10y^2 = 8x^2 + 40xy + 4xy + 20y^2
Приводим подобные и собираем все в левой части:
(17-8)x^2 + (13+13-44)xy + (-7-20)y^2 = 0
9x^2 - 18xy - 27y^2 = 0
Делим всё на 9
x^2 - 2xy - 3y^2 = 0
Делим всё на y^2
(x/y)^2 - 2(x/y) - 3 = 0
Обозначим x/y = n
n^2 - 2n - 3 = 0
(n+1)(n-3) = 0
1) n = x/y = -1; x = -y; x^2 = y^2, тогда:
t = (x^2 + 2y^2)/(x^2 - 2y^2) = 3y^2/(-y^2) = -3
2) n = x/y = 3; x = 3y; x^2 = 9y^2, тогда:
t = (x^2 + 2y^2)/(x^2 - 2y^2) = 11y^2/(7y^2) = 11/7
Наименьшее из чисел (-3; 11/7) = -3
Обозначим количество конфет по цене 110руб за (х) кг, а количество конфет по цене 150руб за (1кг-х) кг
Тогда конфеты по цене 110руб стоят на 110*х=110 руб,
а конфеты по цене 150 руб стоят на 150*(1-х)=(150-150х) руб
А так как общее количество конфет составило 1 кг, составим уравнение:
[110х +(150-150х) ] /1=120
110х+150-150х=120
110х-150х=120-150
-40х=-30
х=-30 : -40
х=3/4=0,75кг (куплено по цене 110руб за 1кг) или 0,75кг
1-3/4=4/4-3/4=1/4=0,25 кг (куплено по цене 150 руб за 1кг) или 0,25кг
ответ: В 1кг смеси конфет содержится 0,75кг по цене 110руб и 0,25кг по цене 150руб